1
|
Roberts JR, Bernstein JM, Austin CC, Hains T, Mata J, Kieras M, Pirro S, Ruane S. Whole snake genomes from eighteen families of snakes (Serpentes: Caenophidia) and their applications to systematics. J Hered 2024; 115:487-497. [PMID: 38722259 DOI: 10.1093/jhered/esae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 08/21/2024] Open
Abstract
We present genome assemblies for 18 snake species representing 18 families (Serpentes: Caenophidia): Acrochordus granulatus, Aparallactus werneri, Boaedon fuliginosus, Calamaria suluensis, Cerberus rynchops, Grayia smithii, Imantodes cenchoa, Mimophis mahfalensis, Oxyrhabdium leporinum, Pareas carinatus, Psammodynastes pulverulentus, Pseudoxenodon macrops, Pseudoxyrhopus heterurus, Sibynophis collaris, Stegonotus admiraltiensis, Toxicocalamus goodenoughensis, Trimeresurus albolabris, and Tropidonophis doriae. From these new genome assemblies, we extracted thousands of loci commonly used in systematic and phylogenomic studies on snakes, including target-capture datasets composed of ultraconserved elements (UCEs) and anchored hybrid enriched loci (AHEs), as well as traditional Sanger loci. Phylogenies inferred from the two target-capture loci datasets were identical with each other and strongly congruent with previously published snake phylogenies. To show the additional utility of these non-model genomes for investigative evolutionary research, we mined the genome assemblies of two New Guinea island endemics in our dataset (S. admiraltiensis and T. doriae) for the ATP1a3 gene, a thoroughly researched indicator of resistance to toad toxin ingestion by squamates. We find that both these snakes possess the genotype for toad toxin resistance despite their endemism to New Guinea, a region absent of any toads until the human-mediated introduction of Cane Toads in the 1930s. These species possess identical substitutions that suggest the same bufotoxin resistance as their Australian congenerics (Stegonotus australis and Tropidonophis mairii) which forage on invasive Cane Toads. Herein, we show the utility of short-read high-coverage genomes, as well as improving the deficit of available squamate genomes with associated voucher specimens.
Collapse
Affiliation(s)
- Jackson R Roberts
- Division of Zoology, Sternberg Museum of Natural History, Fort Hays State University, Hays, KS 67601, United States
- Division of Herpetology, Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Justin M Bernstein
- Center for Genomics, University of Kansas, Lawrence, KS 66045, United States
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010, United States
| | - Christopher C Austin
- Division of Herpetology, Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, United States
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL 60637, United States
| | - Joshua Mata
- Amphibian and Reptile Collection, The Field Museum of Natural History, Chicago, IL 60605, United States
| | - Michael Kieras
- Iridian Genomes, Inc., Bethesda, MD 20817, United States
| | - Stacy Pirro
- Iridian Genomes, Inc., Bethesda, MD 20817, United States
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL 60637, United States
- Amphibian and Reptile Collection, The Field Museum of Natural History, Chicago, IL 60605, United States
| |
Collapse
|
2
|
Gao K, He Z, Xiong J, Chen Q, Lai B, Liu F, Chen P, Chen M, Luo W, Huang J, Ding W, Wang H, Pu Y, Zheng L, Jiao Y, Zhang M, Tang Z, Yue Q, Yang D, Yan T. Population structure and adaptability analysis of Schizothorax o'connori based on whole-genome resequencing. BMC Genomics 2024; 25:145. [PMID: 38321406 PMCID: PMC10845765 DOI: 10.1186/s12864-024-09975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.
Collapse
Affiliation(s)
- Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fei Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenjie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junjie Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haochen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingsong Yue
- Huadian Tibet Hydropower Development Co.,Ltd, Dagu Hydropower Station, Sangri, 856200, Shannan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|