1
|
Han S, Ding H, Peng H, Dai C, Zhang S, Yang J, Gao J, Kan X. Sturnidae sensu lato Mitogenomics: Novel Insights into Codon Aversion, Selection, and Phylogeny. Animals (Basel) 2024; 14:2777. [PMID: 39409726 PMCID: PMC11475038 DOI: 10.3390/ani14192777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The Sturnidae family comprises 123 recognized species in 35 genera. The taxa Mimidae and Buphagidae were formerly treated as subfamilies within Sturnidae. The phylogenetic relationships among the Sturnidae and related taxa (Sturnidae sensu lato) remain unresolved due to high rates of morphological change and concomitant morphological homoplasy. This study presents five new mitogenomes of Sturnidae sensu lato and comprehensive mitogenomic analyses. The investigated mitogenomes exhibit an identical gene composition of 37 genes-including 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes-and one control region (CR). The most important finding of this study is drawn from CAM analyses. The surprisingly unique motifs for each species provide a new direction for the molecular species identification of avian. Furthermore, the pervasiveness of the natural selection of PCGs is found in all examined species when analyzing their nucleotide composition and codon usage. We also determine the structures of mt-tRNA, mt-rRNA, and CR structures of Sturnidae sensu lato. Lastly, our phylogenetic analyses not only well support the monophyly of Sturnidae, Mimidae, and Buphagidae, but also define nine stable subclades. Taken together, our findings will enable the further elucidation of the evolutionary relationships within Sturnidae sensu lato.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hui Peng
- Teaching and Research Office of Evidence-Based Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei 230061, China;
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Jiang C, Kang H, Zhou Y, Zhu W, Zhao X, Mohamed N, Li B. Selected Lark Mitochondrial Genomes Provide Insights into the Evolution of Second Control Region with Tandem Repeats in Alaudidae (Aves, Passeriformes). Life (Basel) 2024; 14:881. [PMID: 39063634 PMCID: PMC11278119 DOI: 10.3390/life14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The control region (CR) regulates the replication and transcription of the mitochondrial genome (mitogenome). Some avian mitogenomes possess two CRs, and the second control region (CR2) may enhance replication and transcription; however, the CR2 in lark mitogenome appears to be undergoing loss and is accompanied by tandem repeats. Here, we characterized six lark mitogenomes from Alaudala cheleensis, Eremophila alpestris, Alauda razae, and Calandrella cinerea and reconstructed the phylogeny of Passerida. Through further comparative analysis among larks, we traced the evolutionary process of CR2. The mitochondrial gene orders were conserved in all published lark mitogenomes, with Cytb-trnT-CR1-trnP-ND6-trnE-remnant CR2 with tandem repeat-trnF-rrnS. Phylogenetic analysis revealed Alaudidae and Panuridae are sister groups at the base of Sylvioidea, and sporadic losses of CR2 may occur in their common ancestor. CR sequence and phylogeny analysis indicated CR2 tandem repeats were generated within CR2, originating in the ancestor of all larks, rather than inherited from CR1. The secondary structure comparison of tandem repeat units within and between species suggested slipped-strand mispairing and DNA turnover as suitable models for explaining the origin and evolution of these repeats. This study reveals the evolutionary process of the CR2 containing tandem repeat in Alaudidae, providing reference for understanding the evolutionary characteristics and dynamics of tandem repeats.
Collapse
Affiliation(s)
- Chuan Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Hui Kang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Yang Zhou
- BGI Research, Shenzhen 518083, China;
- BGI Research, Wuhan 430074, China
| | - Wenwen Zhu
- School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| | - Xilong Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Nassoro Mohamed
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Bo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
- State Forestry and Grassland Administration Detecting Center of Wildlife, Harbin 150040, China
| |
Collapse
|
3
|
Lan G, Yu J, Liu J, Zhang Y, Ma R, Zhou Y, Zhu B, Wei W, Liu J, Qi G. Complete Mitochondrial Genome and Phylogenetic Analysis of Tarsiger indicus (Aves: Passeriformes: Muscicapidae). Genes (Basel) 2024; 15:90. [PMID: 38254979 PMCID: PMC10815732 DOI: 10.3390/genes15010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Tarsiger indicus (Vieillot, 1817), the White-browed Bush Robin, is a small passerine bird widely distributed in Asian countries. Here, we successfully sequenced its mitogenome using the Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) for PE 2 × 150 bp sequencing. Combined with other published mitogenomes, we conducted the first comprehensive comparative mitogenome analysis of Muscicapidae birds and reconstructed the phylogenetic relationships between Muscicapidae and related groups. The T. indicus mitogenome was 16,723 bp in size, and it possessed the typical avian mitogenome structure and organization. Most PCGs of T. indicus were initiated strictly with the typical start codon ATG, while COX1 and ND2 were started with GTG. RSCU statistics showed that CUA, CGA, and GCC were relatively high frequency in the T. indicus mitogenome. T. cyanurus and T. indicus shared very similar mitogenomic features. All 13 PCGs of Muscicapidae mitogenomes had experienced purifying selection. Specifically, ATP8 had the highest rate of evolution (0.13296), whereas COX1 had the lowest (0.01373). The monophylies of Muscicapidae, Turdidae, and Paradoxornithidae were strongly supported. The clade of ((Muscicapidae + Turdidae) + Sturnidae) in Passeriformes was supported by both Bayesian Inference and Maximum likelihood analyses. The latest taxonomic status of many passerine birds with complex taxonomic histories were also supported. For example, Monticola gularis, T. indicus, and T. cyanurus were allocated to Turdidae in other literature; our phylogenetic topologies clearly supported their membership in Muscicapidae; Paradoxornis heudei, Suthora webbiana, S. nipalensis, and S. fulvifrons were formerly classified into Muscicapidae; we supported their membership in Paradoxornithidae; Culicicapa ceylonensis was originally classified as a member of Muscicapidae; our results are consistent with a position in Stenostiridae. Our study enriches the genetic data of T. indicus and provides new insights into the molecular phylogeny and evolution of passerine birds.
Collapse
Affiliation(s)
- Guanwei Lan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (G.L.); (W.W.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Juan Liu
- Administrative Bureau of Baihe National Nature Reserve, Ngawa 623400, China; (J.L.); (Y.Z.); (B.Z.)
| | - Yue Zhang
- Administrative Bureau of Baihe National Nature Reserve, Ngawa 623400, China; (J.L.); (Y.Z.); (B.Z.)
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Biqing Zhu
- Administrative Bureau of Baihe National Nature Reserve, Ngawa 623400, China; (J.L.); (Y.Z.); (B.Z.)
| | - Wei Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (G.L.); (W.W.)
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guilan Qi
- Animal Husbandry Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|
4
|
Ding H, Gao J, Yang J, Zhang S, Han S, Yi R, Ye Y, Kan X. Genome evolution of Buchnera aphidicola (Gammaproteobacteria): Insights into strand compositional asymmetry, codon usage bias, and phylogenetic implications. Int J Biol Macromol 2023; 253:126738. [PMID: 37690648 DOI: 10.1016/j.ijbiomac.2023.126738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Taxa of Buchnera aphidicola (hereafter "Buchnera") are mutualistic intracellular symbionts of aphids, known for their remarkable biological traits such as genome reduction, strand compositional asymmetry, and symbiont-host coevolution. With the growing availability of genomic data, we performed a comprehensive analysis of 103 genomes of Buchnera strains from 12 host subfamilies, focusing on the genomic characterizations, codon usage patterns, and phylogenetic implications. Our findings revealed consistent features among all genomes, including small genome sizes, low GC contents, and gene losses. We also identified strong strand compositional asymmetries in all strains at the genome level. Further investigation suggested that mutation pressure may have played a crucial role in shaping codon usage of Buchnera. Moreover, the genomic asymmetries were reflected in asymmetric codon usage preferences within chromosomal genes. Notably, the levels of these asymmetries were varied among strains and were significantly influenced by the degrees of genome shrinkages. Lastly, our phylogenetic analyses presented an alternative topology of Aphididae, based on the Buchnera symbionts, providing robust confirmation of the paraphylies of Eriosomatinae, and Macrosiphini. Our objectives are to further understand the strand compositional asymmetry and codon usage bias of Buchnera taxa, and provide new perspectives for phylogenetic studies of Aphididae.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
5
|
Bi D, Han S, Zhou J, Zhao M, Zhang S, Kan X. Codon Usage Analyses Reveal the Evolutionary Patterns among Plastid Genes of Saxifragales at a Larger-Sampling Scale. Genes (Basel) 2023; 14:genes14030694. [PMID: 36980966 PMCID: PMC10048229 DOI: 10.3390/genes14030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Saxifragales is a 15-family order of early-divergent Eudicots with a rich morphological diversity and an ancient rapid radiation. Codon usage bias (CUB) analyses have emerged as an essential tool for understanding the evolutionary dynamics in genes. Thus far, the codon utilization patterns had only been reported in four separate genera within Saxifragales. This study provides a comprehensive assessment of the codon manipulation based on 50 plastid genes, covering 11 constituent families at a larger sampling scale. Our results first showed a high preference for AT bases and AT-ending codons. We then used effective number of codons (ENC) to assess a range of codon bias levels in the plastid genes. We also detected high-informative intrafamilial differences of ENC in three families. Subsequently, parity rule 2 (PR2) plot analyses revealed both family-unique and order-shared bias patterns. Most importantly, the ENC plots and neutrality analyses collectively supported the dominant roles of selection in the CUB of Saxifragales plastid genes. Notably, the phylogenetic affinities inferred by both ML and BI methods were consistent with each other, and they all comprised two primary clades and four subclades. These findings significantly enhance our understanding of the evolutionary processes of the Saxifrage order, and could potentially inspire more CUB analyses at higher taxonomic levels.
Collapse
Affiliation(s)
- De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jun Zhou
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Maojin Zhao
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: ; Tel.: +86-139-5537-2268
| |
Collapse
|