1
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Kostusiak P, Slósarz J, Gołębiewski M, Sakowski T, Puppel K. Relationship between Beef Quality and Bull Breed. Animals (Basel) 2023; 13:2603. [PMID: 37627394 PMCID: PMC10451190 DOI: 10.3390/ani13162603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The beef industry in Poland heavily relies on the Polish Holstein-Friesian (PHF) breed, known for its primary use in dairy production, but which also contributes significantly to the beef supply. In contrast, the Limousine (LM), Hereford (HH), and Charolaise (CH) breeds have gained popularity due to their ideal specialized characteristics for beef production. As PHF continues to dominate the beef market, a thorough comparison of its beef quality and nutritional attributes with the three most popular beef breeds in Poland is essential. This study aims to address this knowledge gap by conducting a rigorous comparison. The experiment was carried out on the beef from 67 bulls kept in a free-stall system with standardized feeding. The highest total antioxidant status (TAS) was found in CH and was 147.5% higher than that in PHF. Also, compared with PHF, a large difference of 70% was observed in LM, while in HH it was only 6.25%. For degree of antioxidant potential (DAP), the highest concentration was found in LM, while CH had a slightly lower score than LM. PHF had the lowest scores for each of the analyzed parameters of protein fraction. For anserine, taurine, creatinine, and creatine content, the highest results were found for LM. For carnosine and coenzyme Q10, the highest values were found for CH. Overall, these results highlight the impact of maturity and breed on carcass composition and quality. Late-maturing breeds, such as LM and CH, tend to exhibit leaner carcasses with superior fatty acid profiles and antioxidant properties. This knowledge is valuable for producers, enabling them to make informed decisions regarding breed selection and production strategies to meet specific market demands for beef with the desired composition and quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Tomasz Sakowski
- Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland;
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| |
Collapse
|
4
|
Uyen NT, Cuong DV, Thuy PD, Son LH, Ngan NT, Quang NH, Tuan ND, Hwang IH. A Comparative Study on the Adipogenic and Myogenic Capacity of Muscle Satellite Cells, and Meat Quality Characteristics between Hanwoo and Vietnamese Yellow Steers. Food Sci Anim Resour 2023; 43:563-579. [PMID: 37484005 PMCID: PMC10359837 DOI: 10.5851/kosfa.2023.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023] Open
Abstract
Myogenesis and adipogenesis are the important processes determining the muscle growth and fat accumulation livestock, which ultimately affecting their meat quality. Hanwoo is a popular breed and its meat has been exported to other countries. The objective of this study was to compare the myogenesis and adipogenesis properties in satellite cells, and meat quality between Hanwoo and Vietnamese yellow cattle (VYC). Same 28-months old Hanwoo (body weight: 728±45 kg) and VYC (body weight: 285±36 kg) steers (n=10 per breed) were used. Immediately after slaughter, tissue samples were collected from longissimus lumborum (LL) muscles for satellite cells isolation and assays. After 24 h post-mortem, LL muscles from left carcass sides were collected for meat quality analysis. Under the same in vitro culture condition, the proliferation rate was higher in Hanwoo compared to VYC (p<0.05). Fusion index was almost 3 times greater in Hanwoo (42.17%), compared with VYC (14.93%; p<0.05). The expressions of myogenesis (myogenic factor 5, myogenic differentiation 1, myogenin, and myogenic factor 6)- and adipogenesis (peroxisome proliferator-activated receptor gamma)-regulating genes, and triglyceride content were higher in Hanwoo, compared with VYC (p<0.05). Hanwoo beef had a higher intramuscular fat and total monounsaturated fatty acids contents than VYC beef (p<0.05). Whilst, VYC meat had a higher CIE a* and total polyunsaturated fatty acids content (p<0.05). Overall, there was a significant difference in the in vitro culture characteristics and genes expression of satellite cells, and meat quality between the Hanwoo and VYC.
Collapse
Affiliation(s)
- Nguyen Thu Uyen
- Department of Animal Science, Chonbuk
National University, Jeonju 54896, Korea
| | - Dao Van Cuong
- Faculty of Animal Science and Veterinary
Medicine, Thai Nguyen University of Agriculture and Forestry,
Thai Nguyen 24119, Vietnam
| | - Pham Dieu Thuy
- Faculty of Animal Science and Veterinary
Medicine, Thai Nguyen University of Agriculture and Forestry,
Thai Nguyen 24119, Vietnam
| | - Luu Hong Son
- Faculty of Biotechnology and Food
Technology, Thai Nguyen University of Agriculture and
Forestry, Thai Nguyen 24119, Vietnam
| | - Nguyen Thi Ngan
- Faculty of Animal Science and Veterinary
Medicine, Thai Nguyen University of Agriculture and Forestry,
Thai Nguyen 24119, Vietnam
| | - Nguyen Hung Quang
- Faculty of Animal Science and Veterinary
Medicine, Thai Nguyen University of Agriculture and Forestry,
Thai Nguyen 24119, Vietnam
| | - Nguyen Duc Tuan
- Faculty of Biotechnology and Food
Technology, Thai Nguyen University of Agriculture and
Forestry, Thai Nguyen 24119, Vietnam
| | - In-ho Hwang
- Department of Animal Science, Chonbuk
National University, Jeonju 54896, Korea
| |
Collapse
|
5
|
Hoa VB, Song DH, Seol KH, Kang SM, Kim HW, Bae IS, Kim ES, Park YS, Cho SH. A Comparative Study on the Carcass and Meat Chemical Composition, and Lipid-Metabolism-Related Gene Expression in Korean Hanwoo and Brindle Chikso Cattle. Curr Issues Mol Biol 2023; 45:3279-3290. [PMID: 37185738 PMCID: PMC10137260 DOI: 10.3390/cimb45040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
The objective of this study was to elucidate the effect of cattle breed on carcass and meat chemical composition, fatty acid profiles, and lipid-metabolism-related genes. For this study, same-age Hanwoo and Chikso steers (n = 6 per breed) reared under identical conditions were used. Immediately after slaughter, muscle tissues were collected for analysis of mRNA expression. At 24 h post-mortem, the carcasses were assessed for carcass traits (marbling score, meat yield, etc.), and meat quality and fatty acid profiles in the longissimus lumborum (LL) and semimembranosus (SM) muscles. The results showed that no differences in the slaughter weight, dressing rate, back-fat thickness, trimmed fat, and total meat yield occurred between the two breeds (p > 0.05). However, Hanwoo cattle had a higher marbling score, intramuscular fat (IMF) content, and expression level of lipid-metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor gamma, and fatty acid binding protein 4, compared with Chikso (p < 0.05). Contrastingly, Chikso had a higher total unsaturated fatty acid content and expression level of stearoyl CoA desaturase 1 (p < 0.05). It may be said that the difference in the expression levels of lipid-metabolism-related genes could be the molecular factors underlying IMF deposition and fatty acid profile differences in the beef from the two breeds.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Eun-Sung Kim
- Jeonbuk Livestock Research Center, Jinan-Gun 55460, Republic of Korea
| | - Yeon-Soo Park
- Gangwon-do Livestock Research Institute, Hoengseong-Gun 25266, Republic of Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|