1
|
Pîrvu AM, Cappelleri A, Sala L, Banco B, Giudice C, Stefanello D, Militaru M, Grieco V. Mammary carcinoma in a male cat following long-term medroxyprogesterone acetate treatment: case report and review of the literature. Vet Res Commun 2024; 48:4021-4028. [PMID: 39340734 PMCID: PMC11538189 DOI: 10.1007/s11259-024-10553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
In male cats, as in men, mammary carcinomas are rarely reported. However, like in females, hormonal therapy is a significant risk factor. This study reports the case of an 11-year-old male cat with multiple mammary tumours and a history of long-term medroxyprogesterone acetate therapy for the suppression of sexual behaviour, along with a brief review of the literature. Complete surgical removal of the right mammary chain and the ipsilateral inguinal lymph nodes was performed, and all tissues were submitted for histology. Histological examination revealed the presence of a tumour in the third and fourth mammary glands, consisting of neoplastic cells arranged in various structures, including tubulopapillary and tubular structures, sometimes cystically dilated, and solid areas. The inguinal lymph nodes were also involved. The morphology was consistent with a diagnosis of mammary carcinoma, tubulopapillary type, with nodal metastases. Immunohistochemistry revealed that tumour cells were positive for cytokeratin (clones AE1/AE3), while stromal cells were positive for vimentin (clone V9). The proliferation marker Ki-67, evaluated on both the primary tumour and the nodal metastases, was strongly expressed in the nuclei of neoplastic cells, with a Ki-67 proliferation index of 8.9% and 20% for the primary tumour and the metastases, respectively. This case highlights the importance of considering the possibility of malignant mammary tumours not only in female but also in male cats with a history of long-term hormonal treatment for suppression of sexual behaviour.
Collapse
Affiliation(s)
- Adina Mihaela Pîrvu
- Pathological Anatomy Department, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andrea Cappelleri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy.
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy.
| | - Laura Sala
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Barbara Banco
- MYLAV La Vallonea Veterinary Diagnostic Laboratory, Rho, Italy
| | - Chiara Giudice
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Damiano Stefanello
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Manuella Militaru
- Pathological Anatomy Department, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Valeria Grieco
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Vasilatis DM, Batra N, Lucchesi CA, Abria CJ, Packeiser EM, Murua Escobar H, Ghosh PM. Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines. Int J Mol Sci 2024; 25:8628. [PMID: 39201315 PMCID: PMC11354774 DOI: 10.3390/ijms25168628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
In prostate cancer (PCa), androgens upregulate tumorigenesis, whereas in benign tissue, the revival of androgen receptor (AR) signaling suppresses aggressive behaviors, suggesting therapeutic potential. Dogs, natural PCa models, often lack AR in PCa. We restored AR in dog PCa to investigate resultant characteristics. Three AR-null canine PCa lines (1508, Leo, 1258) were transfected with canine wild-type AR and treated with dihydrotestosterone (DHT). In 1508, AR restoration decreased clonogenicity (p = 0.03), viability (p = 0.004), migration (p = 0.03), invasion (p = 0.01), and increased expression of the tumor suppressor NKX3.1, an AR transcriptional target (p = 0.001). In Leo, AR decreased clonogenicity (p = 0.04) and the expression of another AR transcriptional target FOLH1 (p < 0.001) and increased the expression of NKX3.1 (p = 0.01). In 1258, AR increased migration (p = 0.006) and invasion (p = 0.03). Epithelial-mesenchymal transition (EMT) marker (Vimentin, N-cadherin, SNAIL1) expression increased with AR restoration in Leo and 1258 but not 1508; siRNA vimentin knockdown abrogated AR-induced 1258 migration only. Overall, 1508 showed AR-mediated tumor suppression; AR affected proliferation in Leo but not migration or invasion; and EMT and AR regulated migration and invasion in 1258 but not proliferation. This study highlights the heterogeneous nature of PCa in dogs and cell line-specific effects of AR abrogation on aggressive behaviors.
Collapse
Affiliation(s)
- Demitria M. Vasilatis
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Neelu Batra
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Christopher A. Lucchesi
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Christine J. Abria
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Hugo Murua Escobar
- Department of Medicine, Medical Clinic III, Hematology Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Paramita M. Ghosh
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
3
|
Jianpraphat N, Supsavhad W, Ngernmeesri P, Siripattarapravat K, Soontararak S, Akrimajirachoote N, Phaochoosak N, Jermnak U. A New Benzo[6,7]oxepino[3,2-b] Pyridine Derivative Induces Apoptosis in Canine Mammary Cancer Cell Lines. Animals (Basel) 2024; 14:386. [PMID: 38338029 PMCID: PMC10854894 DOI: 10.3390/ani14030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
CMC is the most frequently diagnosed cancer and one of the leading causes of death in non-spayed female dogs. Exploring novel therapeutic agents is necessary to increase the survival rate of dogs with CMC. MPOBA is a BZOP derivative that has a significant anticancer effect in a human cell line. The main goal of this study was to investigate the anticancer properties of MPOBA against two CMC cell lines (REM134 and CMGT071020) using a 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, a wound healing assay, a transwell migration assay, an Annexin V-FITC apoptosis assay with a flow cytometry analysis, a mRNA expression analysis using quantitative real-time PCR (qRT-PCR), and an immunohistochemistry (IHC). According to the accumulated studies, MPOBA caused significant concentration- and time-dependent reductions in cell proliferation and cell migration and induced apoptosis in both CMC cell lines. In gene expression analysis, nine canine genes, including TP53, BCL-2, BAX, epidermal growth factor receptor (EGFR), snail transcription factor (SNAIL), snail-related zinc-finger transcription factor (SLUG), TWIST, E-cadherin, and N-cadherin, were investigated. The mRNA expression results revealed that MPOBA induced upregulation of TP53 and overexpression of the pro-apoptotic gene BAX, together with an inhibition of BCL-2. Moreover, MPOBA also suppressed the mRNA expression levels of SNAIL, EGFR, and N-cadherin and induced upregulation of E-cadherin, crucial genes related to the epithelial-to-mesenchymal transition (EMT). However, there was no significant difference in the IHC results of the expression patterns of vimentin (VT) and cytokeratin (CK) between MPOBA-treated and control CMC cells. In conclusion, the results of the present study suggested that MPOBA exhibited significant anticancer activity by inducing apoptosis in both CMCs via upregulation of TP53 and BAX and downregulation of BCL-2 relative mRNA expression. MPOBA may prove to be a potential candidate drug to be further investigated as a therapeutic agent for CMC.
Collapse
Affiliation(s)
- Natamon Jianpraphat
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Wachiraphan Supsavhad
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Paiboon Ngernmeesri
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kannika Siripattarapravat
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Sirikul Soontararak
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Usuma Jermnak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| |
Collapse
|
4
|
CHOI JINHO, PARK JOODONG, CHOI SEUNGHEE, KO EUNSU, JANG HYEJUNG, PARK KYUNGSOON. ELK3-ID4 axis governs the metastatic features of triple negative breast cancer. Oncol Res 2023; 32:127-138. [PMID: 38188675 PMCID: PMC10767247 DOI: 10.32604/or.2023.042945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Cancer cell metastasis is a multistep process, and the mechanism underlying extravasation remains unclear. ELK3 is a transcription factor that plays a crucial role in regulating various cellular processes, including cancer metastasis. Based on the finding that ELK3 promotes the metastasis of triple-negative breast cancer (TNBC), we investigated whether ELK3 regulates the extravasation of TNBC by forming the ELK3-ID4 axis. ID4 functions as a transcriptional regulator that interacts with other transcription factors, inhibiting their activity and subsequently influencing various biological processes associated with cell differentiation, survival, growth, and metastasis. Methods We assessed the correlation between the expression of ELK3 and that of ID4 in TNBCs using bioinformatics analyses, QRT-PCR, western blot analysis, luciferase reporter assays, and chromatin immunoprecipitation. Migration, adhesion, invasion, and lung metastasis assays were employed to determine whether the ELK3-ID4 axis regulates the metastatic features of TNBC. Results We found that ELK3 binds directly to a binding motif close to the ID4 promoter to repress promoter activity. The expression of E-cadherin in TNBC was regulated by the ELK3-ID4 axis. In vitro and in vivo analyses showed that inhibiting ID4 expression in ELK3-knockdown MDA-MB-231 (ELK3KD) cells restored the ability to extravasate and metastasize. Conclusion The results indicate that the ELK3 regulates ID4 promoter activity, and that the ELK3-ID4 axis regulates the metastatic characteristics of TNBC cells. Additionally, the data suggest that the ELK3-ID4 axis regulates metastasis of TNBCs by modulating expression of E-cadherin.
Collapse
Affiliation(s)
- JIN-HO CHOI
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - JOO DONG PARK
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - SEUNG HEE CHOI
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - EUN-SU KO
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - HYE JUNG JANG
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - KYUNG-SOON PARK
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|