1
|
Mota-Rojas D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals (Basel) 2024; 14:513. [PMID: 38338158 PMCID: PMC10854546 DOI: 10.3390/ani14030513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB, Tandil 7000, Buenos Aires, Argentina
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Pamela Anahí Lendez
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - María Carolina Ceriani
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Villanueva-García D, Ghezzi M, Mora-Medina P, Hernández-Ávalos I, Olmos-Hernández A, Casas-Alvarado A, Lezama-García K, Domínguez-Oliva A, Rodríguez-González D, Marcet-Rius M. Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid-Base Balance, Gas Exchange, and Infrared Thermal Response. Animals (Basel) 2023; 13:3491. [PMID: 38003109 PMCID: PMC10668766 DOI: 10.3390/ani13223491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Intrapartum asphyxia, fetal hypoxia, and their consequences (e.g., acidosis, hypercapnia, hypoglycemia, and hypothermia) are the main factors related to physio-metabolic imbalances that increase neonatal mortality in piglets, particularly in piglets with low birthweight and low vitality scores. This study aimed to evaluate the effect of three different doses of caffeine (10, 20, and 30 mg/kg) administered orally to 480 newborn piglets with low birthweight and low vitality scores. Blood gas parameters (pH, pO2, pCO2, and HCO3-), physio-metabolic profile (Ca++, glucose, and lactate), and the thermal response assessed through infrared thermography in four thermal windows (ocular, auricular, snout, and hindlimb) and rectal temperature were evaluated during the first 24 h of life. Doses of 30 mg/kg resulted in significant differences at 24 h for all evaluated parameters, suggesting that caffeine administration improved the cardiorespiratory function and metabolic activity of piglets by reducing acidosis, restoring glycemia, and increasing surface and rectal temperature. In conclusion, caffeine at 30 mg/kg could be suggested as an appropriate dose to use in piglets with low birthweight and low vitality scores. Future research might need to study the presentation of adverse effects due to higher caffeine concentrations.
Collapse
Affiliation(s)
- Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, México City 04960, Mexico (K.L.-G.)
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, México City 04960, Mexico (K.L.-G.)
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, México City 04960, Mexico (K.L.-G.)
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, México City 04960, Mexico (K.L.-G.)
| | - Miriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| |
Collapse
|
3
|
Tucker BS, Petrovski KR, Craig JR, Morrison RS, Smits RJ, Kirkwood RN. Associations between Surface and Rectal Temperature Profiles of Low-Birth-Weight Piglets. Animals (Basel) 2023; 13:3259. [PMID: 37893983 PMCID: PMC10603746 DOI: 10.3390/ani13203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The use of infrared cameras to record surface temperature has shown some promise in older pigs, but neonatal piglets are metabolically less mature and experience rapid temperature changes during their first 24 h. The present experiment aimed to compare rectal temperature to surface temperature at the base of the ear, measured using an infrared camera, for piglets of different birth weights. During farrowing, 48 multiparous sows were monitored, and rectal and surface temperatures were recorded for their lower-birth-weight (≤1.2 kg) piglets within 3 min of birth and at 0.25, 0.50, 0.75, 1, 1.25, 1.50, 2, 3, 4, and 24 h. Piglet birth weights were assigned to one of three categories (BWC): BWC1 (≤0.80 kg), BWC2 (0.81 to 1.10 kg), or BWC3 (1.11 to 1.20 kg). Piglet rectal temperatures at 1.25 h after birth were assigned to one of three categories: RC1 (≤32.0 °C), RC2 (32.1 to 35.0 °C), or RC3 (≥35.1 °C). Surface temperatures showed a similar recovery pattern to rectal temperatures in the first 24 h across all piglet birth weights, although large and variable differences seen in the current study militate against surface temperature being an appropriate replacement for neonatal rectal temperature for use in production.
Collapse
Affiliation(s)
- Bryony S. Tucker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (K.R.P.); (R.N.K.)
| | - Kiro R. Petrovski
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (K.R.P.); (R.N.K.)
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Jessica R. Craig
- Rivalea Australia Pty. Ltd., JBS Australia Pork Division, Corowa, NSW 2646, Australia; (J.R.C.); (R.S.M.)
| | - Rebecca S. Morrison
- Rivalea Australia Pty. Ltd., JBS Australia Pork Division, Corowa, NSW 2646, Australia; (J.R.C.); (R.S.M.)
| | - Robert J. Smits
- Research and Innovation, Australian Pork Limited, Barton, ACT 2600, Australia;
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (K.R.P.); (R.N.K.)
| |
Collapse
|
4
|
Lezama-García K, Martínez-Burnes J, Baqueiro-Espinosa U, Olmos-Hernández A, Hernández-Ávalos I, Domínguez-Oliva A, Mota-Rojas D. Assessment of Vitality, Blood Profile, and Degree of Meconium Staining on the Skin in Newborn Dogs According to Its Birth Weight. Vet Sci 2023; 10:453. [PMID: 37505858 PMCID: PMC10386731 DOI: 10.3390/vetsci10070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Neonatal mortality in dogs reaches up to 40%. Due to the high rates, promptly detecting the causes and preventing newborns from dying are extremely important. Vitality evaluation, blood parameters, and the degree of meconium staining on the skin are valuable resources in canine perinatology. In this study, 435 puppies from 85 bitches close to parturition were recruited and divided into four quartiles according to the puppy's birth weight: Q1 (127-200 g) n = 110 puppies, Q2 (201-269 g) n = 108 puppies, Q3 (270-388 g) n = 108 puppies, and Q4 (389-464 g) n = 109 puppies. This experimental article aimed to report the effect of birth weight on the blood profile variables, the vitality of newborn puppies, and the meconium staining degree, integrating these three aspects. It was concluded that the weight of newborns was correlated with the degree of meconium staining, presenting more cases of severe meconium staining in the puppies of the highest birth weight group. The weight of the newborns was correlated with a higher number of stillbirths and alterations in the blood variables, showing the most severe cases of metabolic acidosis, hypoxia, and hypoglycemia in the puppies of the Q4 quartile. On the contrary, no statistically significant correlations were found between the weight of newborns and vitality. Nevertheless, the analysis of the results showed that the most vigorous puppies were found at Q1; however, at minute 60 after birth (AB), all the puppies in the four quartiles standardized their vitality scores.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | | | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
5
|
Bienboire-Frosini C, Wang D, Marcet-Rius M, Villanueva-García D, Gazzano A, Domínguez-Oliva A, Olmos-Hernández A, Hernández-Ávalos I, Lezama-García K, Verduzco-Mendoza A, Gómez-Prado J, Mota-Rojas D. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals (Basel) 2023; 13:2173. [PMID: 37443971 DOI: 10.3390/ani13132173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the most common causes of mortality in neonates, and it could be developed after birth because the uterus temperature is more elevated than the extrauterine temperature. Neonates use diverse mechanisms to thermoregulate, such as shivering and non-shivering thermogenesis. These strategies can be more efficient in some species, but not in others, i.e., altricials, which have the greatest difficulty with achieving thermoneutrality. In addition, there are anatomical and neurological differences in mammals, which may present different distributions and amounts of brown fat. This article aims to discuss the neuromodulation mechanisms of thermoregulation and the importance of brown fat in the thermogenesis of newborn mammals, emphasizing the analysis of the biochemical, physiological, and genetic factors that determine the distribution, amount, and efficiency of this energy resource in newborns of different species. It has been concluded that is vital to understand and minimize hypothermia causes in newborns, which is one of the main causes of mortality in neonates. This would be beneficial for both animals and producers.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| |
Collapse
|
6
|
Mota-Rojas D, Braghieri A, Ghezzi M, Ceriani MC, Martínez-Burnes J, Lendez PA, Pereira AMF, Lezama-García K, Domínguez-Oliva A, Casas-Alvarado A, Sabia E, Pacelli C, Napolitano F. Strategies and Mechanisms of Thermal Compensation in Newborn Water Buffaloes. Animals (Basel) 2023; 13:2161. [PMID: 37443964 PMCID: PMC10340076 DOI: 10.3390/ani13132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Emilio Sabia
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|