1
|
Madureira Ferreira M, Santos B, Skarbek A, Mills C, Thom H, Prentice D, McConnel C, Leal Yepes FA. Bovine Respiratory Disease (BRD) in Post-Weaning Calves with Different Prevention Strategies and the Impact on Performance and Health Status. Animals (Basel) 2024; 14:2807. [PMID: 39409755 PMCID: PMC11476203 DOI: 10.3390/ani14192807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Our study aimed to compare Bovine Respiratory Disease (BRD) morbidity, mortality, and growth in dairy and dairy beef cross-bred calves during the commingle period, 81-120 days of age, using two different BRD prevention strategies. The calves (n = 1799) were randomly assigned into groups: (1) Control (CON; received no vaccine or metaphylaxis); (2) Tulathromycin metaphylaxis (TUL; IncrexxaTM, Elanco Animal Health Inc., Greenfield, IN, USA); and (3) Mannheimia haemolytica vaccine (VACC; Nuplura® PH, Elanco Animal Health Inc., Greenfield, IN, USA). Calves were individually weighed three times during the study to estimate average daily gain (ADG). Deep nasopharyngeal swabs, thoracic ultrasonography, health scores, and treatment records were collected during the study. Ultrasound and health score results were not different across treatments. In this study, the TUL group had a lower cumulative BRD incidence than CON. The cumulative incidence and 95% CI of BRD during the commingle period, 81-120 days of age for CON, TUL, and VACC were 0.43 (0.38 to 0.47), 0.36 (0.38 to 0.40), and 0.39 (0.35 to 0.43), respectively. The ADG for CON, TUL, and VACC were 0.25 ± 0.15, 0.32 ± 0.15, and 0.17 ± 0.15 kg, respectively. There was no difference among the treatment groups for ADG. Management and environmental conditions were variable at this operation throughout the study period and likely impacted the calves. Earlier interventions may be needed when the BRD incidence is elevated in high-risk calves.
Collapse
Affiliation(s)
- Marina Madureira Ferreira
- Department of Animal Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Bruna Santos
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Agata Skarbek
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Carley Mills
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Hannah Thom
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | | | - Craig McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Francisco A. Leal Yepes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Serviento AM, He T, Ma X, Räisänen SE, Niu M. Modeling the effect of ambient temperature on reticulorumen temperature, and drinking and eating behaviors of late-lactation dairy cows during colder seasons. Animal 2024; 18:101209. [PMID: 38905777 DOI: 10.1016/j.animal.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Dairy cows may suffer thermal stress during the colder seasons especially due to their open-air housing systems. Free water temperature (FWT) and feed temperature (FT) are dependent on ambient temperature (AT) and can be critical for maintaining body and reticulorumen temperature (RT) in cold conditions. The objective of this study was to determine the effects of FWT and FT on RT fluctuations, and of AT on RT and drinking and eating behaviors in late-lactation cows during cold exposure. Data were collected from 16 multiparous lactating cows for four 6-d periods during the autumn and winter seasons. The cows (224 ± 36 days in milk; mean ± SD) had an average milk yield (MY) of 24.8 ± 4.97 kg/d and RT of 38.84 ± 0.163 °C. Daily average AT ranged from 4.38 to 17.25 °C. The effects of the temperature and amount of the ingested water or feed on RT change and recovery time, and the effect of the daily AT on RT, feed and water intake, and drinking, eating, and rumination behaviors were analyzed using the generalized additive mixed model framework. Reticulorumen temperature change and recovery time were affected by FWT (+0.0596 °C/°C and -1.27 min/°C, respectively), but not by FT. The amount of the ingested free water and feed affected RT change (-0.108 °C/kg drink size and -0.150 °C/kg meal size, respectively), and RT recovery time (+2.13 min/kg drink size and + 3.71 min/kg meal size, respectively). Colder AT decreased RT by 0.0151 °C/°C between 9.91 and 17.25 °C AT. Cows increased DM intake (DMI) by 0.365 kg/d per 1 °C drop in AT below 10.63 °C, but with no increase in MY. In fact, MY:DMI decreased by 0.0106/°C as AT dropped from 17.25 to 4.38 °C. Free water intake (FWI) was reduced by 0.0856 FWI:DMI/°C as AT decreased from 17.25 to 8.27 °C. Cold exposure influenced animal behavior with fewer drink and meal bouts (-0.432 and -0.290 bouts/d, respectively), larger drink sizes (+0.100 kg/bout), and shorter rumination time (-5.31 min/d) per 1 °C decrease in AT from 17.25 °C to 8.77, 12.53, 4.38, and 10.32 °C, respectively. In conclusion, exposure to low AT increased feed intake, reduced water intake, and changes in eating, drinking and rumination behaviors of dairy cows in late lactation. Additionally, the consequences of cold exposure on cows may be aggravated by ingestion of feed and free water at temperatures lower than the body, potentially impacting feed efficiency due to the extra energetic cost of thermoregulation.
Collapse
Affiliation(s)
- A M Serviento
- Animal Nutrition Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - T He
- Animal Nutrition Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - X Ma
- Animal Nutrition Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - S E Räisänen
- Animal Nutrition Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - M Niu
- Animal Nutrition Group, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
3
|
Moradi B, Kargar S, Kanani M, Nemati M, Albenzio M, Caroprese M, de Castro ÍRR, Marcondes MI. Transition milk or milk replacer powder as waste milk supplements to cold-stressed neonatal Holstein dairy calves: Effects on performance, feeding behavior, and health. PLoS One 2024; 19:e0305227. [PMID: 38917166 PMCID: PMC11198798 DOI: 10.1371/journal.pone.0305227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Young calves are more susceptible to cold than older animals due to their limited ability to regulate body temperature and lack of fat reserves and may have difficulty consuming the energy needed to cope with the cold by maintaining body temperature and meeting their metabolic needs, especially when fed constant levels of waste milk (WM) with less solids, which can be detrimental to health and future performance. An alternative to overcome this problem is increasing the milk's solids content to the existing volume by using different sources [milk replacer powder (MR) or transition milk (TM)]. Thus, we aimed to evaluate the effects of increasing the total solids of WM via MR (WM+MR) or TM (WM+TM) on the performance, feeding behavior, and health-related variables of cold-stressed dairy calves during pre- and post-weaning. We hypothesized that feeding WM supplemented with MR or TM as potential liquid feed enhancers would improve milk dry matter and energy intake of the calves with a positive impact on body development and have no negative impact on feeding behavior and health. Additionally, we hypothesized that MR would not differ from TM. As a sample size calculation at 80% power using power analysis (PROC POWER) in SAS 9.4, a total of 51 Holstein-Friesian vigorous male calves [vigor score 21-27; 17 per treatment; 4-d old; body weight (BW) = 40.0 ± 0.63 kg (mean ± SD)] were selected, assigned randomly to treatments, and housed in individual pens in an outdoor barn. Irrespective of the type of treatment, all calves were fed 6 kg/d liquid feed from d 1 to d 53 of the experiment. In a step-down weaning program, calves received 0.5 kg liquid feed from d 54 to d 60. All calves were weaned on d 61 and remained in the study until d 101 as post-weaning evaluation. The calves had ad libitum access to starter feed and fresh drinking water across the experiment. Intake, growth, and behavior data were analyzed using a general linear mixed model and health data were analyzed using mixed logistic regression, mixed linear regression, and survival analysis models in SAS. We found that supplementation was responsible for a greater dry matter intake (DMI; P = 0.004), superior average BW (P = 0.037), and increased crude protein (CP; P = 0.001) and crude fat (CF; P = 0.001) intakes, with the most favorable outcomes observed for the WM+TM group when compared with WM+MR. Animals fed WM (control group; CON) showed a smaller average daily gain during the first 40-d of life (P = 0.026), showing slight changes during the whole period of evaluation when compared with the supplemented groups (SUP; WM+MR and WM+TM). No difference between MR- and TM-SUP groups, probability of having abnormal appearance (P = 0.032) and pneumonia occurrence (P = 0.022) was reduced in the SUP than in CON animals, with no effect on diarrhea among treatment groups (P = 0.461). Using milk supplements added to WM is an alternative to improve the intake, performance, and health of young calves under cold stress. Our findings showed that SUP animals outperformed the CON group in terms of DMI, average BW, and intake of CP and CF, with the TM-SUP group displaying the most favorable outcomes. Moreover, the SUP groups demonstrated reduced odds of experiencing abnormal appearance and pneumonia, highlighting the positive impact of supplementation on calf health.
Collapse
Affiliation(s)
- Borhan Moradi
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Shahryar Kargar
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Meysam Kanani
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Morteza Nemati
- Foudeh-Sepahan Agriculture and Animal Husbandry Center, Isfahan, Iran
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Ícaro Rainyer Rodrigues de Castro
- Department of Animal Science, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa, Minas Gerais, Brazil
| | - Marcos Inácio Marcondes
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
4
|
Mota-Rojas D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals (Basel) 2024; 14:513. [PMID: 38338158 PMCID: PMC10854546 DOI: 10.3390/ani14030513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB, Tandil 7000, Buenos Aires, Argentina
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Pamela Anahí Lendez
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - María Carolina Ceriani
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Reynolds MR, Stanford K, Meléndez DM, Schwartzkopf-Genswein KS, McAllister TA, Blakley BR, McKinnon JJ, Ribeiro GO. Effect of continuous or intermittent feeding of ergot contaminated grain in a mash or pelleted form on the performance and health of feedlot beef steers. J Anim Sci 2024; 102:skae060. [PMID: 38442241 PMCID: PMC10981080 DOI: 10.1093/jas/skae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
This study evaluated the effect of feeding ergot contaminated grain continuously or intermittently through backgrounding (BG) and finishing (FN) in a mash or pelleted supplement on the growth performance, health and welfare parameters, and carcass characteristics of feedlot beef steers. Sixty black Angus steers (300 ± 29.4 kg BW) were used in a complete randomized 238-d study. Steers were stratified by weight and randomly assigned to four different diets (15 steers/treatment) and individually housed. Treatments included: (1) control [CON; no added ergot alkaloids (EA)], (2) continuous ergot mash (CEM; fed continuously at 2 mg total EA/kg of DM), (3) intermittent ergot mash (IEM; fed at 2 mg total EA/kg of DM, during the first week of each 21-d period and CON for the remaining 2 wk, this feeding pattern was repeated in each period), and (4) intermittent ergot pellet (IEP; fed at 2 mg of total EA/kg of DM as a pellet during the first week of each 21-d period and CON for the remaining 2 wk as described for IEM). Steers were fed barley based BG diets containing 40% concentrate:60% silage (DM basis) for 84 d (four 21-d periods), transitioned over 28 d (no ergot fed) to an FN diet (90% concentrate:10% silage DM basis) and fed for 126 d (six 21-d periods) before slaughter. In the BG phase, steer DMI (P < 0.01, 7.45 vs. 8.05 kg/d) and ADG (P < 0.01) were reduced for all EA diets compared to CON. The CEM fed steers had lower ADG (P < 0.01, 0.735 vs. 0.980 kg) and shrunk final BW (P < 0.01, 350 vs. 366 kg) than CON. CEM had lower gain:feed (P < 0.07, 0.130 vs. 0.142) than CON. In the FN phase, steer DMI (P < 0.01, 9.95 vs. 11.05 kg/d) and ADG (P = 0.04) were also decreased for all EA fed steers compared to CON. Total shrunk BW gain (P = 0.03, 202.5 vs. 225.2 kg), final BW (P = 0.03, 617.9 vs. 662.2 kg), and carcass weight (P = 0.06) decreased for all EA fed steers compared to CON. The percentage of AAA carcasses decreased for all EA fed steers (P < 0.01, 46.7 vs. 93.3%) compared to CON. EA fed steers had increased rectal temperatures (P < 0.01, 39.8 vs. 39.4 °C) compared to CON. Pelleting ergot contaminated grain did not reduce the impact of ergot alkaloids on any of the measured parameters during BG or FN. Continuously or intermittently feeding ergot contaminated diets (2 mg total EA/kg of DM) significantly reduced intake, growth performance, and carcass weight, with minimal impact on blood parameters in feedlot steers. Pelleting was not an effective method of reducing ergot toxicity.
Collapse
Affiliation(s)
- Matthew R Reynolds
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kim Stanford
- Biological Sciences Department, University of Lethbridge, Lethbridge, AB, Canada
| | - Daniela M Meléndez
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, AB, Canada
| | | | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, AB, Canada
| | - Barry R Blakley
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - John J McKinnon
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gabriel O Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Islam MN, Yoder J, Nasiri A, Burns RT, Gan H. Analysis of the Drinking Behavior of Beef Cattle Using Computer Vision. Animals (Basel) 2023; 13:2984. [PMID: 37760384 PMCID: PMC10526023 DOI: 10.3390/ani13182984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Monitoring the drinking behavior of animals can provide important information for livestock farming, including the health and well-being of the animals. Measuring drinking time is labor-demanding and, thus, it is still a challenge in most livestock production systems. Computer vision technology using a low-cost camera system can be useful in overcoming this issue. The aim of this research was to develop a computer vision system for monitoring beef cattle drinking behavior. A data acquisition system, including an RGB camera and an ultrasonic sensor, was developed to record beef cattle drinking actions. We developed an algorithm for tracking the beef cattle's key body parts, such as head-ear-neck position, using a state-of-the-art deep learning architecture DeepLabCut. The extracted key points were analyzed using a long short-term memory (LSTM) model to classify drinking and non-drinking periods. A total of 70 videos were used to train and test the model and 8 videos were used for validation purposes. During the testing, the model achieved 97.35% accuracy. The results of this study will guide us to meet immediate needs and expand farmers' capability in monitoring animal health and well-being by identifying drinking behavior.
Collapse
Affiliation(s)
| | | | | | | | - Hao Gan
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA; (M.N.I.); (J.Y.); (A.N.); (R.T.B.)
| |
Collapse
|
7
|
He T, Yi G, Wang X, Sun Y, Li J, Wu Z, Guo Y, Sun F, Chen Z. Effects of Heated Drinking Water during the Cold Season on Serum Biochemistry, Ruminal Fermentation, Bacterial Community, and Metabolome of Beef Cattle. Metabolites 2023; 13:995. [PMID: 37755275 PMCID: PMC10535483 DOI: 10.3390/metabo13090995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
This study explored the effects of drinking heated water in the cold seasons on the serum metabolism, rumen microbial fermentation, and metabolome of beef cattle. Twelve fattening cattle (642 ± 14.6 kg) aged 21 to 22 months were randomly and equally divided into two groups based on body weight: one receiving room-temperature water (RTW; average 4.39 ± 2.55 °C) and the other heated water (HW; average 26.3 ± 1.70 °C). The HW group displayed a significant decrease in serum glucose (p < 0.01) and non-esterified fatty acid (p < 0.01), but increases in insulin (p = 0.04) and high-density lipoprotein (p = 0.03). The rumen fermentation parameters of the HW group showed substantial elevations in acetate (p = 0.04), propionate (p < 0.01), isobutyrate (p = 0.02), and total volatile fatty acids (p < 0.01). Distinct bacterial composition differences were found between RTW and HW at the operational taxonomic unit (OTU) level (R = 0.20, p = 0.01). Compared to RTW, the HW mainly had a higher relative abundance of Firmicutes (p = 0.07) at the phylum level and had a lower abundance of Prevotella (p < 0.01), norank_f_p-215-o5 (p = 0.03), and a higher abundance of NK4A214_group (p = 0.01) and Lachnospiraceae_NK3A20_group (p = 0.05) at the genus level. In addition, NK4A214_group and Lachnospiraceae_NK3A20_group were significantly positively correlated with the rumen propionate and isovalerate (r > 0.63, p < 0.05). Prevotella was negatively correlated with rumen propionate and total volatile fatty acids (r = -0.61, p < 0.05). In terms of the main differential metabolites, compared to the RTW group, the expression of Cynaroside A, N-acetyl-L-glutamic acid, N-acetyl-L-glutamate-5-semialdehyde, and Pantothenic acid was significantly upregulated in HW. The differentially regulated metabolic pathways were primarily enriched in nitrogen metabolism, arginine biosynthesis, and linoleic acid metabolism. Prevotella was significantly positively correlated with suberic acid and [6]-Gingerdiol 3,5-diacetate (r > 0.59, p < 0.05) and was negatively correlated with Pantothenic acid and isoleucyl-aspartate (r < -0.65, p < 0.05). NK4A214_group was positively correlated with L-Methionine and glycylproline (r > 0.57, p < 0.05). Overall, our research demonstrates the important relationship between drinking water temperature and metabolic and physiological responses in beef cattle. Heating drinking water during cold seasons plays a pivotal role in modulating internal energy processes. These findings underscore the potential benefits of using heated water as a strategic approach to optimize energy utilization in beef cattle during the cold seasons.
Collapse
Affiliation(s)
- Tengfei He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Guang Yi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Xilin Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Yan Sun
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Jiangong Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Yao Guo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Fang Sun
- Institute of Animal Huabandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Zhaohui Chen
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (X.W.); (Y.S.); (J.L.); (Z.W.); (Y.G.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| |
Collapse
|
8
|
He T, Long S, Yi G, Wang X, Li J, Wu Z, Guo Y, Sun F, Liu J, Chen Z. Heating Drinking Water in Cold Season Improves Growth Performance via Enhancing Antioxidant Capacity and Rumen Fermentation Function of Beef Cattle. Antioxidants (Basel) 2023; 12:1492. [PMID: 37627487 PMCID: PMC10451963 DOI: 10.3390/antiox12081492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
The research aimed to investigate the suitable drinking water temperature in winter and its effect on the growth performance, antioxidant capacity, and rumen fermentation function of beef cattle. A total of 40 beef cattle (640 ± 19.2 kg) were randomly divided into five treatments with eight cattle in each treatment raised in one pen according to initial body weight. Each treatment differed only in the temperature of drinking water, including the room-temperature water and four different heat water groups named RTW, HW_1, HW_2, HW_3, and HW_4. The measured water temperatures were 4.39 ± 2.546 °C, 10.6 ± 1.29 °C, 18.6 ± 1.52 °C, 26.3 ± 1.70 °C, and 32.5 ± 2.62 °C, respectively. The average daily gain (ADG) showed a significant linear increase during d 0 to 60 and a quadratic increase during d 31 to 60 with rising water temperature (p < 0.05), and the highest ADG of 1.1911 kg/d was calculated at a water temperature of 23.98 °C (R2 = 0.898). The average rectal temperature on d 30 (p = 0.01) and neutral detergent fiber digestibility (p < 0.01) increased linearly with increasing water temperature. Additionally, HW_2 reduced serum triiodothyronine, thyroxine, and malondialdehyde (p < 0.05), and increased serum total antioxidant capacity (p < 0.05) compared with RTW. Compared with HW_2, RTW had unfavorable effects on ruminal propionate, total volatile fatty acids, and cellulase concentrations (p < 0.05), and lower relative mRNA expression levels of claudin-4 (p < 0.01), occludin (p = 0.02), and zonula occludens-1 (p = 0.01) in the ruminal epithelium. Furthermore, RTW had a higher abundance of Prevotella (p = 0.04), Succinivibrionaceae_UCG-002 (p = 0.03), and Lachnospiraceae_UCG-004 (p = 0.03), and a lower abundance of Bifidobacteriaceae (p < 0.01) and Marinilabiliaceae (p = 0.05) in rumen compared to HW_2. Taken together, heated drinking water in cold climates could positively impact the growth performance, nutrient digestibility, antioxidant capacity, and rumen fermentation function of beef cattle. The optimal water temperature for maximizing ADG was calculated to be 23.98 °C under our conditions. Ruminal propionate and its producing bacteria including Prevotella, Succinivibrionaceae, and Lachnospiraceae might be important regulators of rumen fermentation of beef cattle drinking RTW under cold conditions.
Collapse
Affiliation(s)
- Tengfei He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Shenfei Long
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Guang Yi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Xilin Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Jiangong Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Yao Guo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Fang Sun
- Institute of Animal Huabandry, Hei Longjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Jijun Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Zhaohui Chen
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (S.L.); (G.Y.); (X.W.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| |
Collapse
|
9
|
Liu T, Gao C, Long S, Wang Q, He T, Wu Z, Chen Z. Drinking Heated Water Improves Performance via Increasing Nutrient Digestibility and Ruminal Fermentation Function in Yak Calves. Animals (Basel) 2023; 13:2073. [PMID: 37443871 DOI: 10.3390/ani13132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
This study was conducted to investigate the effects of heated water intake on the growth performance, serum biochemical indexes, apparent total tract digestibility (ATTD) of nutrients and ruminal fermentation function of yak calves in winter. A total of 24 yaks (59.09 ± 3.181 kg) were randomly selected and divided into a cold water (fluctuated with the temperature of test sites at 0-10 °C) group (CW) (58.58 ± 3.592 kg) and a heated water (20 °C) group (HW) (59.61 ± 2.772 kg). After 2 months of the experiment, body weight, serum biochemical indexes, ruminal fermentation characteristics and ATTD were measured. The results showed that drinking heated water increased (p < 0.05) the total weight gain and average daily gain of yaks compared with those drinking cold water. Heated water increased (p < 0.05) the levels of immune globulin M, interleukin-6, triiodothyronine, tetraiodothyronine and growth hormone compared with cold water. In addition, yaks drinking heated water showed higher (p < 0.05) ATTD of crude protein and ether extract, as well as increased (p < 0.05) content of total protein, albumin and urea nitrogen in serum than those drinking cold water. Compared with cold water, heated water showed increased (p < 0.05) total volatile fatty acids, acetic acid and propionic acid, and a reduced (p < 0.05) acetic acid to propionic acid ratio (p < 0.05). In conclusion, drinking heated water at 20 °C could improve performance via increasing nutrient digestibility and ruminal fermentation function in yak calves.
Collapse
Affiliation(s)
- Tianxu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chenxi Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tengfei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|