1
|
Zeng XY, Javid A, Tian G, Zhang KY, Bai SP, Ding XM, Wang JP, Lv L, Xuan Y, Li SS, Zeng QF. Metabolomics analysis to interpret changes in physiological and metabolic responses to chronic heat stress in Pekin ducks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169382. [PMID: 38110095 DOI: 10.1016/j.scitotenv.2023.169382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Heat stress (HS) is a major environmental threat that affects duck production in subtropical and tropical regions, especially in summer. This study aimed to evaluate the physiological and metabolic responses of Pekin ducks to chronic HS conditions via liquid chromatography-mass spectrometry (LC-MS) using a paired-fed (PF) experimental design. On the basis of equivalent feed intake (HS vs. PF), HS significantly reduced growth performance and the percentage of leg and breast muscles, however, markedly increased the percentage of abdominal fat and breast skin fat. Serum metabolomics results revealed that heat-stressed ducks showed enhanced glycolysis and pentose phosphate pathways, as demonstrated by higher glucose 6-phosphate and 6-phogluconic acid levels in the PF vs. HS comparison. HS decreased hepatic mRNA levels of mitochondrial fatty acid β-oxidation-related genes (MCAD and SCAD) compared to the PF group, resulting in acetylcarnitine accumulation in serum. Moreover, HS elevated the concentrations of serum amino acids and mRNA levels of ubiquitination-related genes (MuRF1 and MAFbx) in the skeletal muscle and amino acid transporter-related genes (SLC1A1 and SLC7A1) and gluconeogenesis-related genes (PCK1 and PCase) in the liver compared to the PF group. When compared to the normal control group (NC), HS further decreased growth performance, but it elevated the abdominal fat rate. However, increased mRNA levels of ubiquitination-related genes and serum amino acid accumulation were not observed in the HS group compared to the NC group, implying that reduced feed intake masked the effect of HS on skeletal muscle breakdown and is a form of protection for the organism. These results suggest that chronic HS induces protein degradation in the skeletal muscle to provide amino acids for hepatic gluconeogenesis to provide sufficient energy, as Pekin ducks under HS conditions failed to efficiently oxidise fatty acids and ketones in the mitochondria, leading to poor growth performance and slaughter characteristics.
Collapse
Affiliation(s)
- Xiangyi-Yi Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Arshad Javid
- University of Veterinary & Animal Science, Lahore, Pakistan
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke-Ying Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Ping Bai
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Mei Ding
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian-Ping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Lv
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xuan
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan-Shan Li
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiu-Feng Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Kwakye J, Ariyo OW, Ghareeb AFA, Hartono E, Sovi S, Aryal B, Milfort MC, Fuller AL, Rekaya R, Aggrey SE. Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment. Genes (Basel) 2023; 14:1922. [PMID: 37895271 PMCID: PMC10606071 DOI: 10.3390/genes14101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Reduced feed intake during heat stress (HS) disrupts glucose homeostasis, thereby resulting in endoplasmic reticulum (ER) stress and triggering apoptosis in chickens. We hypothesize that glucose supplementation could reduce apoptosis in chickens raised under HS. This study comprised 456 28-day-old broiler chickens randomly assigned to four treatment combinations under glucose supplementation and HS. The treatments were TN0, TN6, HS0, and HS6 with two glucose levels (0% and 6%) and two temperature levels (25 °C (thermoneutral-TN) and 35 °C (8.00 AM to 8.00 PM, (HS)). After 7 days post-HS, the blood glucose level for the HS6 group was higher than for TN0, TN6, and HS0. We studied the mRNA expression of genes and caspase-3 activity in the four experimental groups. The expressions of GCN2, ATF4, CHOP, and FOXO3a increased during HS regardless of glucose supplementation, while PERK and MAFbx increased only under HS with glucose supplementation. We show that under TN conditions, glucose supplementation led to a significant increase in cellular apoptosis in the Pectoralis (P.) major. However, under HS with glucose, the level of apoptosis was similar to that of chickens raised under TN conditions with no glucose supplementation. The utility of glucose to curtail apoptosis under HS should be tested under other intense models of HS.
Collapse
Affiliation(s)
- Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Evan Hartono
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Selorm Sovi
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| |
Collapse
|