1
|
Yoon DS, Kim DH, Kim JH, Sakakura Y, Hagiwara A, Park HG, Lee MC, Lee JS. Interactions between lipid metabolism and the microbiome in aquatic organisms: A review. MARINE POLLUTION BULLETIN 2024; 207:116858. [PMID: 39159571 DOI: 10.1016/j.marpolbul.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Marine organisms' lipid metabolism contributes to marine ecosystems by producing a variety of lipid molecules. Historically, research focused on the lipid metabolism of the organisms themselves. Recent microbiome studies, however, have revealed that gut microbial communities influence the amount and type of lipids absorbed by organisms, thereby altering the organism's lipid metabolism. This has highlighted the growing importance of research on gut microbiota. This review highlights mechanisms by which gut microbiota facilitate lipid digestion and diversify the lipid pool in aquatic animals through the accelerated degradation of exogenous lipids and the transformation of lipid molecules. We also assess how environmental factors and pollutants, along with the innovative use of probiotics, interact with the gut microbiome to influence lipid metabolism within the host. We aim to elucidate the complex interactions between lipid metabolism and gut microbiota in aquatic animals by synthesizing current research and identifying knowledge gaps, providing a foundation for future explorations.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Yoshitaka Sakakura
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan; Takuyo Co. Ltd., Kengun 1-35-11, Higashi-ku, Kumamoto 862-0911, Japan
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Min-Chul Lee
- Department of Food & Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Niu X, Dang Z, Hong M, Shi H, Ding L. Effects of Freshwater Acidification on the Gut Microbial Community of Trachemys scripta elegans. Animals (Basel) 2024; 14:1898. [PMID: 38998010 PMCID: PMC11240511 DOI: 10.3390/ani14131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Freshwater acidification (FA) has become a global environmental problem, posing a potential threat to freshwater ecosystems. The gut microbiota plays a crucial role in the host's response and adaptation to new environments. In this study, we investigated the changes in microbial communities in Red-eared slider (Trachemys scripta elegans) under acidic conditions to reveal the ecological impacts of acidification on freshwater turtles. The results showed that there were significant differences in β-diversity (p = 0.03), while there were no significant differences in the α-diversity of gut microbiota in T. s. elegans between the different levels of acidification (pH of 5.5, 6.5, 7.5). Both the Gut Microbiome Health Index (GMHI) and the Microbial Dysbiosis Index (MDI) exhibited significant differences when comparing environments with a pH of 5.5 to those with a pH of 6.5 (p < 0.01). A comparative analysis between pH levels of 5.5 and 6.5 also revealed substantial differences (p < 0.01). Likewise, a comparative analysis between pH levels of 6.5 and 7.5 also revealed substantial differences (p < 0.01). At the phylum level, Firmicutes, Fusobacteria, and Bacteroidota formed a major part of the gut microbial community, Fusobacteria showed significant differences in different acidity environments (p = 0.03). At the genus level, Cetobacterium, Turicibacter, unclassified Eubacteriaceae, and Anaerorhabdus_furcosa_group showed significant differences in different acidity environments. The pH reduced interactivity in the gut microbiota of T. s. elegans. In addition, LEfSe analysis and functional prediction revealed that the potentially_pathogenic and stress_tolerant functional characteristics also showed significant differences in different acidity environments. The findings underscore the pivotal role of the gut microbiota in T. s. elegans in response to freshwater acidification and provide a foundation for further exploration into the impacts of acidification on freshwater ecosystems.
Collapse
Affiliation(s)
| | | | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (X.N.); (Z.D.); (H.S.)
| | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (X.N.); (Z.D.); (H.S.)
| |
Collapse
|
3
|
Xing C, Wang M, Chen Z, Li Y, Zhou X, Wang L, Zhong Y, Li W, Shen X, Gao H, Wang P. Morphological and Molecular Changes during Limb Regeneration of the Exopalaemon carinicauda. Animals (Basel) 2024; 14:685. [PMID: 38473070 DOI: 10.3390/ani14050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
With the increase in breeding density of Exopalaemon carinicauda, appendage breakage may occur, which seriously affects survival and economic benefits. To study the limb regeneration process of E. carinicauda, we induced autotomy of the pereopods. After a period of time, wound swelling disappeared, the pigment gradually accumulated, and a tawny film subsequently formed in the wound. The healing period of the wound occurred 24 h after autotomy, and the blastema formation stage occurred 48 h after autotomy. After 4 days of cutting, the limb buds began to differentiate, grow, and expand rapidly, and this process lasted approximately 15 days. Microscopic observations revealed significant changes in the type and number of associated cells including outer epithelial cells, granulocytes, embryonic cells, columnar epidermal cells, elongated cells, and blastoma cells, during the process from limb fracture to regeneration. A comparative transcriptome analysis identified 1415 genes differentially expressed between the J0h (0 h post autotomy) and J18h (18 h post autotomy), and 3952 and 4366 differentially expressed genes for J0 and J14d (14 days post autotomy) and J18h and J14d, respectively. Some of these genes may be related to muscle growth or molting, as indicated by the presence of troponin C, chitinase, actin, innexin, and cathepsin L. As a functional gene involved in epidermal formation, the mRNA expression level of the innexin inx2 in the pereopod of E. carinicauda changed significantly in the experimental groups (p < 0.05). The results of this study contribute to existing knowledge of regeneration mechanisms in crustaceans.
Collapse
Affiliation(s)
- Chaofan Xing
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mintao Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhenxiang Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinlei Zhou
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yao Zhong
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenjia Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|