1
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Chen M, Lian D, Li Y, Zhao Y, Xu X, Liu Z, Zhang J, Zhang X, Wu S, Qi S, Deng S, Yu K, Lian Z. Global Long Noncoding RNA Expression Profiling of MSTN and FGF5 Double-Knockout Sheep Reveals the Key Gatekeepers of Skeletal Muscle Development. DNA Cell Biol 2023; 42:163-175. [PMID: 36917699 DOI: 10.1089/dna.2022.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF-/-) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF-/- sheep and the F1 generation (MF+/-) sheep showed an obvious "double-muscle" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF+/- sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF+/- sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.
Collapse
Affiliation(s)
- Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Sujun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Shen J, Luo Y, Wang J, Hu J, Liu X, Li S, Hao Z, Li M, Zhao Z, Zhang Y, Yang S, Wang L, Gu Y. Integrated transcriptome analysis reveals roles of long non-coding RNAs (lncRNAs) in caprine skeletal muscle mass and meat quality. Funct Integr Genomics 2023; 23:63. [PMID: 36810929 DOI: 10.1007/s10142-023-00987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the growth and development of skeletal muscle. However, there is limited information on goats. In this study, expression profiles of lncRNAs in Longissimus dorsi muscle from Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with divergent meat yield and meat quality were compared using RNA-sequencing. Based on our previous microRNA (miRNA) and mRNA profiles obtained from the same tissues, the target genes and binding miRNAs of differentially expressed lncRNAs were obtained. Subsequently, lncRNA-mRNA interaction networks and a ceRNA network of lncRNA-miRNA-mRNA were constructed. A total of 136 differentially expressed lncRNAs were identified between the two breeds. Fifteen cis target genes and 143 trans target genes were found for differentially expressed lncRNAs, and they were enriched in muscle contraction, muscle system process, muscle cell differentiation, and p53 signaling pathway. A total of 69 lncRNA-trans target gene pairs were constructed, with close relationship with muscle development, intramuscular fat deposition, and meat tenderness. A total of 16 lncRNA-miRNA-mRNA ceRNA pairs were identified, of which some reportedly associated with skeletal muscle development and fat deposition were found. The study will provide an improved understanding of the roles of lncRNAs in caprine meat yield and meat quality.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuting Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shutong Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Longbin Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuanhua Gu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
4
|
Han H, Wang X, Li W, Liu J, Fan Y, Zhang H, Yang J, Gao Y, Liu Y. Identification and Characterization of lncRNAs Expression Profile Related to Goat Skeletal Muscle at Different Development Stages. Animals (Basel) 2022; 12:ani12192683. [PMID: 36230427 PMCID: PMC9558979 DOI: 10.3390/ani12192683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
LncRNAs are essential for regulating skeletal muscle. However, the expression profile and function of lncRNAs in goat muscle remains unclear. Here, an average of ~14.58 Gb high-quality reads were obtained from longissimus dorsi tissues of 1-month-old (n = 3) and 9-month-old (n = 3) Wu'an black goats using RNA sequencing. Of a total of 3441 lncRNAs, 1281 were lincRNAs, 805 were antisense lncRNAs, and 1355 were sense_overlapping lncRNAs. These lncRNAs shared some properties with goats, such as fewer exons, shorter transcript, and open reading frames (ORFs) length. Among them, 36 differentially expressed lncRNAs (DE lncRNA) were identified, and then 10 random lncRNAs were validated by RT-qPCR. Furthermore, 30 DE lncRNAs were neighboring 71 mRNAs and several genes were functionally enriched in muscle development-related pathways, such as APC, IFRD1, NKX2-5, and others. Additionally, 36 DE lncRNAs and 2684 mRNAs were included in co-expression interactions. A lncRNA-miRNA-mRNA network containing 4 lncRNAs, 3 miRNAs, and 8 mRNAs was finally constructed, of which XR_001296113.2 might regulate PDLIM7 expression by interaction with chi-miR-1296 to affect skeletal muscle development. This study revealed the expression profile of goat lncRNAs for further investigative studies and provides a fuller understanding of skeletal muscle development.
Collapse
Affiliation(s)
- Haiyin Han
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Xianwei Wang
- Henan Animal Husbandry Service, Zhengzhou 450046, China
| | - Wentao Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yekai Fan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Hui Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Junqi Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yahui Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
- Correspondence: (Y.G.); (Y.L.); Tel./Fax: +86-0310-8573021 (Y.G.); +86-0310-8573009 (Y.L.)
| | - Yufang Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
- Correspondence: (Y.G.); (Y.L.); Tel./Fax: +86-0310-8573021 (Y.G.); +86-0310-8573009 (Y.L.)
| |
Collapse
|
5
|
He X, Wu R, Yun Y, Qin X, Chen L, Han Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of messenger RNA and long noncoding RNA related to different developmental stages of tail adipose tissues of sunite sheep. Food Sci Nutr 2021; 9:5722-5734. [PMID: 34646540 PMCID: PMC8498062 DOI: 10.1002/fsn3.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The tail fat of sheep is the most typical deposited fat, and it can be widely used in human daily life, such as diet, cosmetics, and industrial raw materials. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6, 18, and 30 months. A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep. Based on functional analysis, we found that fat-related DEGs were mainly expressed at 6 months of age and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their transregulators. Further, we obtained several fat-related differentially expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Finally, we concluded that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process.
Collapse
Affiliation(s)
- Xige He
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Rihan Wu
- College of Biochemistry and EngineeringHohhot Vocational CollegeHohhotChina
| | - Yueying Yun
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
- School of Life Science and TechnologyInner Mongolia University of Science and TechnologyBaotouChina
| | - Xia Qin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lu Chen
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Yunfei Han
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Jindi Wu
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lina Sha
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Gerelt Borjigin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|