1
|
Kafi Z, Masoudi AA, Torshizi RV, Ehsani A. Copy number variations affecting growth curve parameters in a crossbred chicken population. Gene 2024; 927:148710. [PMID: 38901536 DOI: 10.1016/j.gene.2024.148710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Copy number variations (CNVs) are key structural variations in the genome and may contribute to phenotypic differences. In this study, we used a F2 chicken population created from reciprocal crossing between fast-growing Arian broiler line and Urmia native chickens. The chickens were genotyped by 60 K SNP BeadChip, and PennCNV algorithm was used to detect genome-wide CNVs. The growth curve parameters of W0, k, L, Wf, Wi, ti and average GR were used as phenotypic data. The association between CNV and growth curve parameters was carried out using the CNVRanger R/Bioconductor package. Five CNV regions (CNVRs) were chosen for the validation experiment using qPCR. Gene enrichment analysis was done using WebGestalt. The STRING database was used to search for significant pathways. The results identified 966 CNVs and 600 CNVRs including 468 gains, 67 losses, and 65 both events on autosomal chromosomes. Validation of the CNVRs obtained from the qPCR assay were 79 % consistent with the prediction by PennCNV. A total of 43 significant CNVs were obtained for the seven growth curve parameters. The 416 genes annotated for significant CNVs. Six genes out of 416 genes were most related to growth curve parameters. These genes were LCP2, Dock2, CD80, CYFIP1, NIPA1 and NIPA2. Some of these genes in their biological process were associated with the growth, reproduction and development of cells or organs that ultimately lead to the growth of the body. The results of the study could pave the way for better understanding the molecular process of CNVs and growth curve parameters in birds.
Collapse
Affiliation(s)
- Zeinab Kafi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Tian Y, An J, Zhang X, Di J, He J, Yasen A, Ma Y, Sailikehan G, Huang X, Tian K. Genome-Wide Scan for Copy Number Variations in Chinese Merino Sheep Based on Ovine High-Density 600K SNP Arrays. Animals (Basel) 2024; 14:2897. [PMID: 39409846 PMCID: PMC11476046 DOI: 10.3390/ani14192897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Sheep are a vital species in the global agricultural economy, providing essential resources such as meat, milk, and wool. Merino sheep (Junken type) are a key breed of fine wool sheep in China. However, research on fine wool traits has largely overlooked the role of SNPs and their association with phenotypes. Copy number variations (CNVs) have emerged as one of the most important sources of genetic variation, influencing phenotypic traits by altering gene expression and dosage. To generate a comprehensive CNVR map of the ovine genome, we conducted genome-wide CNV detection using genotyping data from 285 fine wool sheep. This analysis revealed 656 CNVRs, including 628 on autosomes and 28 on the X chromosome, covering a total of 43.9 Mbs of the sheep genome. The proportion of CNVRs varied across chromosomes, from 0.45% on chromosome 26 to 3.72% on chromosome 10. Functional annotation through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted significantly enriched GO terms, including odorant binding, ATP binding, and sulfuric ester hydrolase activity. The KEGG analysis identified involvement in pathways such as neuroactive ligand-receptor interaction, axon guidance, ECM-receptor interaction, the one-carbon pool by folate, and focal adhesion (p < 0.05). To validate these CNVRs, we performed quantitative real-time PCR experiments to verify copy number predictions made by PennCNV software (v1.0.5). Out of 11 selected CNVRs with predicted gain, loss, or gain-loss statuses, 8 (IDs 68, 156, 201, 284, 307, 352, 411, 601) were successfully confirmed. This study marks a significant step forward in mapping CNVs in the ovine genome and offers a valuable resource for future research on genetic variation in sheep.
Collapse
Affiliation(s)
- Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Jing An
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
- College of Animal Science and Technology, Northwest Agriculture and Forest University, Yangling, Xianyang 712100, China
| | - Xinning Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jiang Di
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Junmin He
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ayinuer Yasen
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Yanpin Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Gaohaer Sailikehan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
3
|
Mastrangelo S, Biscarini F, Riggio S, Ragatzu M, Spaterna A, Cendron F, Ciampolini R. Genome-wide association study for morphological and hunting-behavior traits in Braque Français Type Pyrénées dogs: A preliminary study. Vet J 2024; 306:106189. [PMID: 38945428 DOI: 10.1016/j.tvjl.2024.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
High-throughput genotyping offers great potential to increase our understanding of the genomic basis of canid variation. Braque Français Type Pyrénées (BRA) are smart, agile, and friendly dogs originally developed for tracking, hunting, and retrieving feathered game. On a population of 44 unrelated BRA dogs, single nucleotide polymorphism (SNP) genotype data from the CanineHD Whole-Genome Genotyping BeadChip and evaluation scores for 12 traits related to morphology and hunting performance were available. After quality filtering, 95,859 SNPs on the 38 dog autosomes (CFA) were retained. Phenotypic scores were expressed on a scale from 1 (worst) to 6 (best) and were mostly poorly to moderately correlated except for some morphological traits (e.g. r = 0.81 between the conformation of the head and that of the eye). From GWAS, a total of 378 SNP-phenotype associations with posterior odds of association > 1 have been detected. The strongest associations were found for the eye conformation, for the skull/muzzle ratio, and for connection to the hunter. These included both new and previously identified markers and genes potentially involved with type and behavior traits in BRA. Six of the significant markers mapped within SETDB2, a gene known to be related to pointing behavior in dogs. These results advance our understanding of the genetic basis for morphology and hunting behavior in dogs and identify new variants which are potential targets for further research.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Filippo Biscarini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR-IBBA), 20133 Milano, Italy.
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Marco Ragatzu
- Club Italiano Braque Francais Type Pyrénées dogs, 58011 Capalbio (GR), Italy
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, Università di Camerino, 62024 Matelica, MC, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
4
|
Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-Wide Detection of Copy Number Variations Associated with Miniature Features in Horses. Genes (Basel) 2023; 14:1934. [PMID: 37895283 PMCID: PMC10606273 DOI: 10.3390/genes14101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Copy number variations (CNVs) are crucial structural genomic variants affecting complex traits in humans and livestock animals. The current study was designed to conduct a comprehensive comparative copy number variation analysis among three breeds, Debao (DB), Baise (BS), and Warmblood (WB), with a specific focus on identifying genomic regions associated with miniature features in horses. Using whole-genome next-generation resequencing data, we identified 18,974 CNVs across 31 autosomes. Among the breeds, we found 4279 breed-specific CNV regions (CNVRs). Baise, Debao, and Warmblood displayed 2978, 986, and 895 distinct CNVRs, respectively, with 202 CNVRs shared across all three breeds. After removing duplicates, we obtained 1545 CNVRs from 26 horse genomes. Functional annotation reveals enrichment in biological functions, including antigen processing, cell metabolism, olfactory conduction, and nervous system development. Debao horses have 970 genes overlapping with CNVRs, possibly causing their small size and mountainous adaptations. We also found that the genes GHR, SOX9, and SOX11 may be responsible for the miniature features of the Debao horse by analyzing their overlapping CNVRs. Overall, this study offers valuable insights into the widespread presence of CNVs in the horse genome. The findings contribute to mapping horse CNVs and advance research on unique miniature traits observed in the Debao horse.
Collapse
Affiliation(s)
- Md. Panir Choudhury
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Bangladesh Livestock Research Institute, Ministry of Fisheries and Livestock, Savar, Dhaka 1341, Bangladesh
| | - Zihao Wang
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Min Zhu
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shaohua Teng
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Jing Yan
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shuwei Cao
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Guoqiang Yi
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
5
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
6
|
Wang Z, Guo J, Guo Y, Yang Y, Teng T, Yu Q, Wang T, Zhou M, Zhu Q, Wang W, Zhang Q, Yang H. Genome-Wide Detection of CNVs and Association With Body Weight in Sheep Based on 600K SNP Arrays. Front Genet 2020; 11:558. [PMID: 32582291 PMCID: PMC7297042 DOI: 10.3389/fgene.2020.00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/07/2020] [Indexed: 01/30/2023] Open
Abstract
Copy number variations (CNVs) are important genomic structural variations and can give rise to significant phenotypic diversity. Herein, we used high-density 600K SNP arrays to detect CNVs in two synthetic lines of sheep (DS and SHH) and in Hu sheep (a local Chinese breed). A total of 919 CNV regions (CNVRs) were detected with a total length of 48.17 Mb, accounting for 1.96% of the sheep genome. These CNVRs consisted of 730 gains, 102 losses, and 87 complex CNVRs. These CNVRs were significantly enriched in the segmental duplication (SD) region. A CNVR-based cluster analysis of the three breeds revealed that the DS and SHH breeds share a close genetic relationship. Functional analysis revealed that some genes in these CNVRs were also significantly enriched in the olfactory transduction pathway (oas04740), including members of the OR gene family such as OR6C76, OR4Q2, and OR4K14. Using association analyses and previous gene annotations, we determined that a subset of identified genes was likely to be associated with body weight, including FOXF2, MAPK12, MAP3K11, STRBP, and C14orf132. Together, these results offer valuable information that will guide future efforts to explore the genetic basis for body weight in sheep.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Jing Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Meng Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Qiusi Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Wenwen Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
7
|
Amiri Ghanatsaman Z, Wang GD, Asadollahpour Nanaei H, Asadi Fozi M, Peng MS, Esmailizadeh A, Zhang YP. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics 2020; 21:207. [PMID: 32131720 PMCID: PMC7057629 DOI: 10.1186/s12864-020-6619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|