1
|
Dyer WB, Simonova G, Chiaretti S, Bouquet M, Wellburn R, Heinsar S, Ainola C, Wildi K, Sato K, Livingstone S, Suen JY, Irving DO, Tung JP, Li Bassi G, Fraser JF. Recovery of organ-specific tissue oxygen delivery at restrictive transfusion thresholds after fluid treatment in ovine haemorrhagic shock. Intensive Care Med Exp 2022; 10:12. [PMID: 35377109 PMCID: PMC8980119 DOI: 10.1186/s40635-022-00439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fluid resuscitation is the standard treatment to restore circulating blood volume and pressure after massive haemorrhage and shock. Packed red blood cells (PRBC) are transfused to restore haemoglobin levels. Restoration of microcirculatory flow and tissue oxygen delivery is critical for organ and patient survival, but these parameters are infrequently measured. Patient Blood Management is a multidisciplinary approach to manage and conserve a patient’s own blood, directing treatment options based on broad clinical assessment beyond haemoglobin alone, for which tissue perfusion and oxygenation could be useful. Our aim was to assess utility of non-invasive tissue-specific measures to compare PRBC transfusion with novel crystalloid treatments for haemorrhagic shock. Methods A model of severe haemorrhagic shock was developed in an intensive care setting, with controlled haemorrhage in sheep according to pressure (mean arterial pressure 30–40 mmHg) and oxygen debt (lactate > 4 mM) targets. We compared PRBC transfusion to fluid resuscitation with either PlasmaLyte or a novel crystalloid. Efficacy was assessed according to recovery of haemodynamic parameters and non-invasive measures of sublingual microcirculatory flow, regional tissue oxygen saturation, repayment of oxygen debt (arterial lactate), and a panel of inflammatory and organ function markers. Invasive measurements of tissue perfusion, oxygen tension and lactate levels were performed in brain, kidney, liver, and skeletal muscle. Outcomes were assessed during 4 h treatment and post-mortem, and analysed by one- and two-way ANOVA. Results Each treatment restored haemodynamic and tissue oxygen delivery parameters equivalently (p > 0.05), despite haemodilution after crystalloid infusion to haemoglobin concentrations below 70 g/L (p < 0.001). Recovery of vital organ-specific perfusion and oxygen tension commenced shortly before non-invasive measures improved. Lactate declined in all tissues and correlated with arterial lactate levels (p < 0.0001). The novel crystalloid supported rapid peripheral vasodilation (p = 0.014) and tended to achieve tissue oxygen delivery targets earlier. PRBC supported earlier renal oxygen delivery (p = 0.012) but delayed peripheral perfusion (p = 0.034). Conclusions Crystalloids supported vital organ oxygen delivery after massive haemorrhage, despite haemodilution to < 70 g/L, confirming that restrictive transfusion thresholds are appropriate to support oxygen delivery. Non-invasive tissue perfusion and oximetry technologies merit further clinical appraisal to guide treatment for massive haemorrhage in the context of Patient Blood Management. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00439-6.
Collapse
Affiliation(s)
- Wayne B Dyer
- Australian Red Cross Lifeblood, Sydney, Australia.
| | - Gabriela Simonova
- Australian Red Cross Lifeblood, Brisbane, Australia.,Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | | | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.,Cardiovascular Research Institute, Basel, Switzerland
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | | | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David O Irving
- Australian Red Cross Lifeblood, Sydney, Australia.,Faculty of Health, University of Technology, Sydney, Australia
| | - John-Paul Tung
- Australian Red Cross Lifeblood, Brisbane, Australia.,Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Analysis of pH and Electrolytes in Blood and Electrolytes in Ruminal Fluid, including Kidney Function Tests, in Sheep Undergoing General Anaesthesia for Laparotomy. Animals (Basel) 2022; 12:ani12070834. [PMID: 35405824 PMCID: PMC8996901 DOI: 10.3390/ani12070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Performing Sectio Caesarea in sheep under general anaesthesia is a common procedure in veterinary practice. The abdominal cavity can be accessed via linea alba, for which the ewe is positioned in the supine position, whereby rumen and uterus can compromise lung function. Although the rumen represents an important reservoir for fluid and electrolytes, and kidney function during anaesthesia is essential, these parameters have not been focused on in research. Therefore, the objective of this study is to contribute data on blood parameters, ruminal fluid, and kidney function tests during laparotomy. Methods: Laparotomy was performed in 14 ewes, whereof five animals were pregnant ewes (PE) and nine non-pregnant ewes (NPE). A total of seven animals received isoflurane in addition to oxygen (inhalational anaesthesia (InhA)) and seven ewes were anaesthetised with xylazine and ketamine (total intravenous anaesthesia (TIVA)); all ewes received lumbosacral anaesthesia. Blood, urine, and ruminal fluid were sampled every hour over a three-hour period. Results: On comparing InhA to TIVA, higher values were detected for TIVA in haemoglobin, paced cell volume, sodium, phosphate, glucose concentration in the blood, and phosphate in ruminal fluid. Lower values were detected for TIVA in partial pressure of oxygen, oxygen saturation, and creatinine clearance. On comparing PE to NPE, higher values were detected in PE in magnesium and ruminal calcium. Lower values in PE were detected in chloride, base excess in the blood, and ruminal phosphate. Over time, an increase in partial pressure of carbon dioxide, glucose in the blood, glucose in urine, and a decrease in protein and albumin could be observed. Conclusion: Surgery in sheep in the supine position should be performed with additional oxygen to maintain physiological pO2 and sO2 values. Kidney function could be maintained with a minimal electrolyte infusion regime. Additional glucose is not necessary, even in pregnant ewes. Further research should be conducted on parameters in ruminal fluid.
Collapse
|