1
|
Rajput S, Gautam D, Vats A, Roshan M, Goyal P, Rana C, S M P, Ludri A, De S. Aquaporin (AQP) gene family in Buffalo and Goat: Molecular characterization and their expression analysis. Int J Biol Macromol 2024; 280:136145. [PMID: 39353522 DOI: 10.1016/j.ijbiomac.2024.136145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Aquaporins (AQPs) are essential membrane proteins facilitating water and small solute transport across cell membranes. Mammals have approximately 13 paralogs of AQPs that may have evolved through gene duplication events. These genes are present in two separate clusters within the genome. In the present study, comprehensive 13 AQP genes (AQP0-12) were cloned and characterized in buffalo and goat. The protein coding region of AQPs in both species ranged from 729 to 990 bps, corresponding to 263-330 amino acid residues. Two important residues including NPA motifs and ar/R selectivity filter were found conserved in all AQPs, except for AQP7, 11 and 12. AQP0, 2, 4, 5, 7, 9, 12 showed tissue-restricted expression, whereas AQP1, 3, 8, and 11 exhibited ubiquitous expression across several tissues. AQP10 was identified as a pseudogene in all artiodactyls. Transcript variants were identified in buffalo and goat, where some variants of goat AQP5 and 6 lacked important motifs. Evolutionary analysis indicated positive selection at or near the NPA motifs and ar/R selectivity filter of AQP0, 3, 6, 7, and 10 that may alter its structure and function. This study is crucial for future investigations aiming to study the molecular mechanisms of AQPs in response to various physiological conditions.
Collapse
Affiliation(s)
- Shiveeli Rajput
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Ashutosh Vats
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Priyanka Goyal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Chanchal Rana
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Payal S M
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Ashutosh Ludri
- Department of Physiology, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Sachinandan De
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India.
| |
Collapse
|
2
|
Hu Y, Wang L, Yang G, Wang S, Guo M, Lu H, Zhang T. VDR promotes testosterone synthesis in mouse Leydig cells via regulation of cholesterol side chain cleavage cytochrome P450 (Cyp11a1) expression. Genes Genomics 2023; 45:1377-1387. [PMID: 37747642 DOI: 10.1007/s13258-023-01444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND The vitamin D receptor (VDR) mediates the pleiotropic biological actions that include osteoporosis, immune responses and androgen synthesis.VDR is widely expressed in testis cells such as Leydig cells, Sertoli cells, and sperm. The levels of steroids are critical for sexual development. In the early stage of steroidogenesis, cholesterol is converted to pregnenolone (precursor of most steroid hormones) by cholesterol side-chain lyase (CYP11A1), which eventually synthesizes the male hormone testosterone. OBJECTIVE This study aims to reveal how VDR regulates CYP11A1 expression and affects testosterone synthesis in murine Leydig cells. METHODS The levels of VDR, CYP11A1 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. Targeted relationship between VDR and Cyp11a1 was evaluated by dual-luciferase reporter assay. The levels of testosterone concentrations in cell culture media serum by enzyme-linked immunosorbent assay (ELISA). RESULTS Phylogenetic and motif analysis showed that the Cyp11a1 family had sequence loss, which may have special biological functions during evolution. The results of promoter prediction showed that vitamin D response element (VDRE) existed in the upstream promoter region of murine Cyp11a1. Dual-luciferase assay confirmed that VDR could bind candidate VDREs in upstream region of Cyp11a1, and enhance gene expression. Tissue distribution and localizatio analysis showed that Cyp11a1 was mainly expressed in testis, and dominantly existed in murine Leydig cells. Furthermore, over-expression VDR and CYP11A1 significantly increased testosterone synthesis in mice Leydig cells. CONCLUSIONS Active vitamin D3 (VD3) and Vdr interference treatment showed that VD3/VDR had a positive regulatory effect on Cyp11a1 expression and testosterone secretion. VDR promotes testosterone synthesis in male mice by up-regulating Cyp11a1 expression, which played an important role for male reproduction.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ge Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Miaomiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China.
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
3
|
Rajput S, Gautam D, Vats A, Rana C, Behera M, Roshan M, Ludri A, De S. Adaptive Selection in the Evolution of Aquaglyceroporins in Mammals. J Mol Evol 2023:10.1007/s00239-023-10112-5. [PMID: 37149832 DOI: 10.1007/s00239-023-10112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Aquaporins (AQPs) are integral membrane proteins responsible for water transport across cellular membranes in both prokaryotes and eukaryotes. A subfamily of AQPs, known as aquaglyceroporins (AQGPs), facilitate the transport of small solutes such as glycerol, water, and other solutes across cellular membranes. These proteins are involved in a variety of physiological processes, such as organogenesis, wound healing, and hydration. Although AQPs have been studied extensively in different species, their conservation patterns, phylogenetic relationships, and evolution in mammals remain unexplored. In the present study, 119 AQGP coding sequences from 31 mammalian species were analysed to identify conserved residues, gene organisation, and most importantly, the nature of AQGP gene selection. Repertoire analysis revealed the absence of AQP7, 9, and 10 genes in certain species of Primates, Rodentia, and Diprotodontia, although not all three genes were absent in a single species. Two Asparagine-Proline-Alanine (NPA) motifs located at the N- and C-terminal ends, aspartic acid (D) residues, and the ar/R region were conserved in AQP3, 9, and 10. Six exons encoding the functional MIP domain of AQGP genes were found to be conserved across mammalian species. Evolutionary analysis indicated signatures of positive selection in AQP7, 9, and 10 amongst different mammalian lineages. Furthermore, substitutions of certain amino acids located close to critical residues may alter AQGP functionality, which is crucial for substrate selectivity, pore formation, and transport efficiency required for the maintenance of homeostasis in different mammalian species.
Collapse
Affiliation(s)
- Shiveeli Rajput
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), AGL, Karnal, Haryana, 132001, India
| | - Devika Gautam
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), AGL, Karnal, Haryana, 132001, India
| | - Ashutosh Vats
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), AGL, Karnal, Haryana, 132001, India
| | - Chanchal Rana
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), AGL, Karnal, Haryana, 132001, India
| | - Manisha Behera
- Department of Zoology, Hindu College, University of Delhi, Delhi, 110007, India
| | - Mayank Roshan
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), AGL, Karnal, Haryana, 132001, India
| | - Ashutosh Ludri
- Department of Animal Physiology, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Sachinandan De
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), AGL, Karnal, Haryana, 132001, India.
| |
Collapse
|
4
|
Kumagai S, Watanabe E, Hayashi N, Kimura Y, Kamiya T, Nagashima A, Ushio K, Imaizumi G, Kim J, Munakata K, Umezawa T, Hirose S, Kasai K, Fujiwara T, Romero MF, Kato A. Boric acid transport activity of marine teleost aquaporins expressed in Xenopus oocytes. Physiol Rep 2023; 11:e15655. [PMID: 36967473 PMCID: PMC10040401 DOI: 10.14814/phy2.15655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Marine teleosts ingest large amounts of seawater containing various ions, including 0.4 mM boric acid, which can accumulate at toxic levels in the body. However, the molecular mechanisms by which marine teleosts absorb and excrete boric acid are not well understood. Aquaporins (Aqps) are homologous to the nodulin-like intrinsic protein (NIP) family of plant boric acid channels. To investigate the potential roles of Aqps on boric acid transport across the plasma membrane in marine teleosts, we analyzed the function of Aqps of Japanese pufferfish (Takifugu rubripes) expressed in Xenopus laevis oocytes. Takifugu genome database contains 16 genes encoding the aquaporin family members (aqp0a, aqp0b, aqp1aa, aqp1ab, aqp3a, aqp4a, aqp7, aqp8bb, aqp9a, aqp9b, aqp10aa, aqp10bb, aqp11a, aqp11b, aqp12, and aqp14). When T. rubripes Aqps (TrAqps) were expressed in X. laevis oocytes, a swelling assay showed that boric acid permeability was significantly increased in oocytes expressing TrAqp3a, 7, 8bb, 9a, and 9b. The influx of boric acid into these oocytes was also confirmed by elemental quantification. Electrophysiological analysis using a pH microelectrode showed that these TrAqps increase B(OH)3 permeability. These results indicate that TrAqp3a, 7, 8bb, 9a, and 9b act as boric acid transport systems, likely as channels, in marine teleosts.
Collapse
Affiliation(s)
- Shiori Kumagai
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Erika Watanabe
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Naoko Hayashi
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuuri Kimura
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ayumi Nagashima
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kazutaka Ushio
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Genki Imaizumi
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Juhyun Kim
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Keijiro Munakata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takahiro Umezawa
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shigehisa Hirose
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Koji Kasai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Michael F. Romero
- Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMinnesotaUnited States
- Nephrology & HypertensionMayo Clinic College of MedicineRochesterMinnesotaUnited States
- O'Brien Urology Research CenterMayo Clinic College of MedicineRochesterMinnesotaUnited States
| | - Akira Kato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMinnesotaUnited States
- Center for Biological Resources and InformaticsTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
5
|
Ishibashi K, Tanaka Y, Morishita Y. Evolutionary Overview of Aquaporin Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:81-98. [PMID: 36717488 DOI: 10.1007/978-981-19-7415-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are present not only in three domains of life, bacteria, eukaryotes, and archaea, but also in viruses. With the accumulating arrays of AQP superfamily, the evolutional relationship has attracted much attention with multiple publications on "the genome-wide identification and phylogenetic analysis" of AQP superfamily. A pair of NPA boxes forming a pore is highly conserved throughout the evolution and renders key residues for the classification of AQP superfamily into four groups: AQP1-like, AQP3-like, AQP8-like, and AQP11-like. The complexity of AQP family has mostly been achieved in nematodes and subsequent evolution has been directed toward increasing the number of AQPs through whole-genome duplications (WGDs) to extend the tissue specific expression and regulation. The discovery of the intracellular AQP (iAQP: AQP8-like and AQP11-like) and substrate transports by the plasma membrane AQP (pAQP: AQP1-like and AQP3-like) have accelerated the AQP research much more toward the transport of substrates with complex profiles. This evolutionary overview based on a simple classification of AQPs into four subfamilies will provide putative structural, functional, and localization information and insights into the role of AQP as well as clues to understand the complex diversity of AQP superfamily.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan.
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, Ohmiya, Saitama-City, Saitama, Japan
| |
Collapse
|
6
|
Genome-wide identification and expression analysis of the aquaporin gene family reveals the role in the salinity adaptability in Nile tilapia (Oreochromis niloticus). Genes Genomics 2022; 44:1457-1469. [DOI: 10.1007/s13258-022-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
7
|
Behera BK, Parhi J, Dehury B, Rout AK, Khatei A, Devi AL, Mandal SC. Molecular characterization and structural dynamics of Aquaporin1 from walking catfish in lipid bilayers. Int J Biol Macromol 2021; 196:86-97. [PMID: 34914911 DOI: 10.1016/j.ijbiomac.2021.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
Aquaporin's (AQPs) are the major superfamily of small integral membrane proteins that facilitates transportation of water, urea, ammonia, glycerol and ions across biological cell membranes. Despite of recent advancements made in understanding the biology of Aquaporin's, only few isoforms of aquaporin 1 (AQP1) some of the teleost fish species have been characterized at molecular scale. In this study, we made an attempt to elucidate the molecular mechanism of water transportation in AQP1 from walking catfish (Clarias batrachus), a model species capable of breathing in air and inhabits in challenging environments. Using state-of-the-art computational modelling and all-atoms molecular dynamics simulation, we explored the structural dynamics of full-length aquaporin 1 from walking catfish (CbAQP1) in lipid mimetic bilayers. Unlike AQP1 of human and bovine, structural ensembles of CbAQP1 from MD revealed discrete positioning of pore lining residues at the intracellular end. Snapshots from MD simulation displayed differential dynamics of aromatic/arginine (ar/R) filter and extracellular loop C bridging transmembrane (TM) helix H3 and H4. Distinct conformation of large extracellular loops, loop bridging TM2 domain and HB helix along with positioning of selectivity filter lining residues controls the permeability of water across the bilayer. Moreover, the identified unique and conserved lipid binding sites with 100% lipid occupancy signifies lipid mediated structural dynamics of CbAQP1. All-together, this is the first ever report on structural-dynamics of aquaporin 1 in walking catfish which will be useful to understand the molecular basis of transportation of water and other small molecules under varying degree of hyperosmotic environment.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| | - Janmejay Parhi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India; Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Ananya Khatei
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Asem Lembika Devi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Sagar Chandra Mandal
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| |
Collapse
|
8
|
Kushwaha B, Pandey M, Das P, Joshi CG, Nagpure NS, Kumar R, Kumar D, Agarwal S, Srivastava S, Singh M, Sahoo L, Jayasankar P, Meher PK, Shah TM, Hinsu AT, Patel N, Koringa PG, Das SP, Patnaik S, Bit A, Iquebal MA, Jaiswal S, Jena J. The genome of walking catfish Clarias magur (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes. DNA Res 2021; 28:6070145. [PMID: 33416875 PMCID: PMC7934567 DOI: 10.1093/dnares/dsaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering ∼94% of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.
Collapse
Affiliation(s)
- Basdeo Kushwaha
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Manmohan Pandey
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Paramananda Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Naresh S Nagpure
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Ravindra Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Suyash Agarwal
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Shreya Srivastava
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Mahender Singh
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Pallipuram Jayasankar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Prem K Meher
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Tejas M Shah
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Ankit T Hinsu
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Namrata Patel
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Prakash G Koringa
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Sofia P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Siddhi Patnaik
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Amrita Bit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Mir A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Joykrushna Jena
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
9
|
Characterization and molecular evolution of claudin genes in the Pungitius sinensis. J Comp Physiol B 2020; 190:749-759. [PMID: 32778926 DOI: 10.1007/s00360-020-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Claudins are a family of integrated membrane-bound proteins involving in paracellular tightness, barrier forming, ion permeability, and substrate selection at tight junctions of chordate epithelial and endothelial cells. Here, 39 putative claudin genes were identified in the Pungitius sinensis based on the high throughput RNA-seq. Conservative motif distribution in each group suggested functional relevance. Divergence of duplicated genes implied the species' adaptation to the environment. In addition, selective pressure analyses identified one site, which may accelerate functional divergence in this protein family. Pesticides cause environmental pollution and have a serious impact on aquatic organisms when entering the water. The expression pattern of most claudin genes was affected by organophosphorus pesticide, indicating that they may be involved in the immune regulation of organisms and the detoxification of xenobiotics. Protein-protein network analyses also exhibited 439 interactions, which implied the functional diversity. It will provide some references for the functional study on claudin genes.
Collapse
|
10
|
Molecular Evolution and Characterization of Fish Stathmin Genes. Animals (Basel) 2020; 10:ani10081328. [PMID: 32752168 PMCID: PMC7460142 DOI: 10.3390/ani10081328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Stathmin is a highly conserved microtubule remodeling protein. Here, 175 putative stathmin genes were identified in 27 species of fish. Gene organization, motif distribution, divergence of duplicated genes, functional divergence, synteny relationship, and protein-protein interaction were performed to investigate their evolutionary history. In addition, expression profiles of some stathmins were examined under dimethoate treatment. The results will provide useful references for further functional analyses. Abstract Stathmin is a highly conserved microtubule remodeling protein, involved in many biological processes such as signal transduction, cell proliferation, neurogenesis and so on. However, little evolutional information has been reported about this gene family in fish. In this study, 175 stathmin genes were identified in 27 species of fish. Conserved exon-intron structure and motif distributions were found in each group. Divergence of duplicated genes implied the species’ adaptation to the environment. Functional divergence suggested that the evolution of stathmin is mainly influenced by purifying selection, and some residues may undergo positive selection. Moreover, synteny relationship near the stathmin locus was relatively conserved in some fish. Network analyses also exhibited 74 interactions, implying functional diversity. The expression pattern of some stathmin genes was also investigated under pesticide stress. These will provide useful references for their functional research in the future.
Collapse
|
11
|
Transcriptome-Based Identification and Molecular Evolution of the Cytochrome P450 Genes and Expression Profiling under Dimethoate Treatment in Amur Stickleback ( Pungitius sinensis). Animals (Basel) 2019; 9:ani9110873. [PMID: 31661806 PMCID: PMC6912322 DOI: 10.3390/ani9110873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (CYPs) are a family of membrane-bound mono-oxygenase proteins, which are involved in cell metabolism and detoxification of various xenobiotic substances. In this study, we identified 58 putative CYP genes in Amur stickleback (Pungitius sinensis) based on the transcriptome sequencing. Conserved motif distribution suggested their functional relevance within each group. Some present recombination events have accelerated the evolution of this gene family. Moreover, a few positive selection sites were identified, which may have accelerated the functional divergence of this family of proteins. Expression patterns of these CYP genes were investigated and indicated that most were affected by dimethoate treatment, suggesting that CYPs were involved in the detoxication of dimethoate. This study will provide a foundation for the further functional investigation of CYP genes in fishes.
Collapse
|