1
|
Zhang K, Zhang R, Zhang Y, Zhang M, Su H, Zhao F, Wang D, Cao G, Zhang Y. Regulation of LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells via TLR4-Mediated NF-κB and MAPK Signaling Pathways by Lactoferrin. Life (Basel) 2025; 15:69. [PMID: 39860009 PMCID: PMC11767191 DOI: 10.3390/life15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lactoferrin (LF), a member of the transferrin family, is widely present in mammalian milk and other secretions, exhibiting anti-inflammatory, antibacterial, and anti-infective properties. Although the biological functions of LF have been extensively studied, there are few reports on its effects and molecular mechanisms concerning bovine mastitis caused by bacterial infection. This study used bovine mammary epithelial cells (BMECs) cultured in vitro as the research model. An inflammatory injury model was established by stimulating BMECs with LPS to investigate whether LF at different concentrations (10, 50, 100, and 200 μg·mL-1) could inhibit the inflammatory response before and after the onset of inflammation. The expression of inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α at both the gene and protein levels was detected using RT-qPCR and ELISA. Western blotting was employed to evaluate the phosphorylation levels in the inflammatory signaling pathways MAPK/P38/ERK and NF-κB/P65, while RT-qPCR was used to examine the impact on TLR4 receptor gene expression. The results display that pretreatment with LF prior to LPS-induced inflammation in BMECs reduced the expression of inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α at both the gene and protein levels (p < 0.05). LF also inhibited the phosphorylation of NF-κB/P65 and MAPK/P38/ERK signaling pathways and downregulated TLR4 receptor gene expression (p < 0.05). However, when LF was added after the onset of LPS-induced inflammation, inflammatory cytokine expression and phosphorylation levels in the NF-κB/P65 and MAPK/P38/ERK pathways remained elevated, along with high expression of the TLR4 receptor gene (p < 0.05). These findings show that LF can antagonize LPS-induced inflammatory responses in BMECs and reduce cytokine expression, exhibiting anti-inflammatory effects when administered before inflammation. Conversely, when LF is added post-inflammation, it appears to enhance cytokine expression, potentially promoting the recruitment of more cells or factors to resolve inflammation rapidly. Both effects are mediated through the TLR4 receptor and the NF-κB/P65 and MAPK/P38/ERK signaling pathways.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Ruizhen Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Min Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Feifei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Guifang Cao
- College of Life Sciences, Inner Mongolia University, Hohhot 010011, China
| | - Yong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (K.Z.); (R.Z.); (Y.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| |
Collapse
|
2
|
Tan K, Sekiguchi Y, Hiratsuka E, Eguchi N, Mukawa K, Uyeno Y, Kushibiki S. Effects of Moringa oleifera leaf powder supplementation on milk somatic cell scores and the plasma indexes of inflammation and antioxidant activity in dairy cows. Vet Res Commun 2024; 49:41. [PMID: 39589675 DOI: 10.1007/s11259-024-10607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
The effects of Moringa oleifera (MO) leaf powder (MOLP) supplementation on milk somatic cell scores (SCS), plasma inflammation markers, and plasma antioxidants were studied in 18 multiparous Holstein cows, 10 in early lactation (days in milk; DIM < 100) and eight in mid- and late-lactation (DIM ≥ 100). Nine of these 18 cows (5 + 4 individuals for each lactation stage, respectively) were placed in the MO group and fed with MOLP at 0.3% of partial mixed ration (PMR) dry matter (DM) for 3 weeks, while the other nine represented the control group and were not fed any MOLP supplementation. Milk, blood, and rumen fluid samples were collected on weeks 0 and 3. The SCS and plasma acute phase protein (APP) concentrations in the early lactation cows in the control group increased markedly (P < 0.05) and milk yield decreased significantly, resulting in a difference (P < 0.05) between groups at the end of the experiment. In mid- and late-lactation cows, MOLP supplementation did not affect SCS, milk yields, and plasma APP concentrations. Plasma superoxide dismutase levels in the MO group at both lactation stages were higher (P < 0.05) than in the control group. In conclusion, feeding MOLP at 0.3% of PMR DM to dairy cows for 3 weeks controlled the increase in SCS in the early lactation individuals and the subsequent decrease in milk production as a response to inflammation. The results also suggested that MOLP supplementation was responsible for the increase in antioxidant activity during lactation.
Collapse
Affiliation(s)
- Kei Tan
- Yamagata Prefectural Syonai Livestock Health and Sanitation Office, Mikawa, 997-1301, Yamagata, Japan
| | | | - Eriko Hiratsuka
- Morinaga Association for the Promotion of Dairy, Minato-ku, Tokyo, 108-8384, Japan
| | | | - Kenji Mukawa
- NOSAN Farm Co., Ltd, Otofuke, 080-0271, Hokkaido, Japan
| | - Yutaka Uyeno
- Faculty of Agriculture, Shinshu University, Matsumoto, Nagano, 399-4511, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0901, Japan.
| |
Collapse
|
3
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
5
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
6
|
Kwon HC, Jung HS, Kim DH, Han JH, Han SG. The Role of Progesterone in Elf5 Activation and Milk Component Synthesis for Cell-Cultured Milk Production in MAC-T Cells. Animals (Basel) 2024; 14:642. [PMID: 38396610 PMCID: PMC10886090 DOI: 10.3390/ani14040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin is essential for mammary gland development and lactation. Progesterone also induces ductal branching and alveolar formation via initial secretory differentiation within the mammary gland. Herein, we aimed to evaluate the role of progesterone as a prolactin substitute for the production of cell-cultured milk components in MAC-T cells. Cells were treated with various hormones such as prolactin (PRL), progesterone (P4), 17β-estradiol (E2), cortisol (COR), and insulin (INS) for 5 d. MAC-T cells cultured in a P4 differentiation media (2500 ng/mL of P4, 25 ng/mL of E2, 25 ng/mL of COR, and 25 ng/mL of INS) showed similar levels of E74-like factor 5 (Elf5) and milk component synthesis (α-casein, β-casein, α-lactalbumin, β-lactoglobulin, and triglycerides) compared to those cultured in a PRL differentiation media (5000 ng/mL of PRL, 500 ng/mL of CORT, and 50 ng/mL of INS). The levels of α-casein and triglycerides in the optimal P4 differentiation media were present at comparable levels to those in the PRL differentiation media. Our results demonstrated that P4 induces the activation of Elf5 and the synthesis of milk components in MAC-T cells, similar to PRL. Therefore, P4 may be used as an effective substitute of PRL for cell-cultured milk production in in vitro frameworks.
Collapse
Affiliation(s)
| | | | | | | | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (H.C.K.); (H.S.J.); (D.H.K.); (J.H.H.)
| |
Collapse
|
7
|
Sahu J, Misra AK, Baithalu RK. Moringa oleifera leaf meal supplementation improves nutrient digestibility, milk yield, and reproductive performances in dairy cows during early lactation. Trop Anim Health Prod 2023; 55:396. [PMID: 37930486 DOI: 10.1007/s11250-023-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The study aimed to evaluate the effects of Moringa oleifera leaf meal (MOLM) supplementation on nutrient utilization, milk yield, and reproductive performance of early lactating Sahiwal cows. Control cows (GC) received a basal diet, while the treatment cows (GM) were supplemented with concentrate comprising 12% MOLM. Ovarian activity and uterine involution were monitored by trans-rectal ultrasonography on the 21st, 28th, 35th, and 42nd days postpartum. The result indicated that MOLM-supplemented cows required fewer days (P ≤ 0.05) to complete uterine involution. As lactation progresses, there was a significant reduction (P ≤ 0.05) in the diameter of the cervix and uterine horns in GM than GC. There was a significant increase in the number of follicles on the 21st day and average milk yield in GM than GC. The incidence of endometritis and cystic ovarian disease was less in MOLM supplemented group. The use of MOLM in the diet reduced the total cost per cow per successful service. It is concluded that MOLM can be safely included at 12% in the diet of early lactating cows to modulate the reproductive performances of dairy cows. Dairy farmers can use moringa leaf meal to feed their dairy cows, which is cheaper and improves production and reproduction performance.
Collapse
Affiliation(s)
- Jyotimala Sahu
- Livestock Production Management, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Arun Kumar Misra
- Livestock Production Management, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Rubina Kumari Baithalu
- Animal Reproduction Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, 132001, Haryana, India
| |
Collapse
|
8
|
Zheng L, Lu X, Yang S, Zou Y, Zeng F, Xiong S, Cao Y, Zhou W. The anti-inflammatory activity of GABA-enriched Moringa oleifera leaves produced by fermentation with Lactobacillus plantarum LK-1. Front Nutr 2023; 10:1093036. [PMID: 36969807 PMCID: PMC10034114 DOI: 10.3389/fnut.2023.1093036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionGamma-aminobutyric acid (GABA), one of the main active components in Moringa oleifera leaves, can be widely used to treat multiple diseases including inflammation.MethodsIn this study, the anti-inflammatory activity and the underlying anti-inflammatory mechanism of the GABA-enriched Moringa oleifera leaves fermentation broth (MLFB) were investigated on lipopolysaccharide (LPS)-induced RAW 264.7 cells model. The key active components changes like total flavonoids, total polyphenols and organic acid in the fermentation broth after fermentation was also analyzed.ResultsELISA, RT-qPCR and Western blot results indicated that MLFB could dose-dependently inhibit the secretions and intracellular expression levels of pro-inflammatory cytokines like 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α). Furthermore, MLFB also suppressed the expressions of prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS). Moreover, the mRNA expressions of the key molecules like Toll-like receptor 4 (TLR-4) and nuclear factor (NF)-κB in the NF-κB signaling pathway were also restrained by MLFB in a dose-dependent manner. Besides, the key active components analysis result showed that the GABA, total polyphenols, and most organic acids like pyruvic acid, lactic acid as well as acetic acid were increased obviously after fermentation. The total flavonoids content in MLFB was still remained to be 32 mg/L though a downtrend was presented after fermentation.DiscussionOur results indicated that the MLFB could effectively alleviate LPS-induced inflammatory response by inhibiting the secretions of pro-inflammatory cytokines and its underlying mechanism might be associated with the inhibition of TLR-4/NF-κB inflammatory signaling pathway activation. The anti-inflammatory activity of MLFB might related to the relative high contents of GABA as well as other active constituents such as flavonoids, phenolics and organic acids in MLFB. Our study provides the theoretical basis for applying GABA-enriched Moringa oleifera leaves as a functional food ingredient in the precaution and treatment of chronic inflammatory diseases.
Collapse
|
9
|
Shen J, Yang F, Wang G, Mou X, Li J, Ding X, Wang X, Li H. Paeoniflorin alleviates inflammation in bovine mammary epithelial cells induced by Staphylococcus haemolyticus through TLR2/NF-κB signaling pathways. Res Vet Sci 2023; 156:95-103. [PMID: 36796241 DOI: 10.1016/j.rvsc.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is one of the most common coagulase-negative staphylococci (CoNS) isolates from bovine mastitis. Paeoniflorin (PF) shows anti-inflammatory effects on different inflammatory diseases in vitro studies and in vivo animal experiments. In this study, the viability of bovine mammary epithelial cells (bMECs) was detected by the cell counting kit-8 experiment. Subsequently, bMECs were induced with S. haemolyticus, and the induction dosage was determined. The expression of pro-inflammatory cytokines and toll-like receptor (TLR2) and nuclear factor kappa-B (NF-κB) signaling pathway-related genes were investigated by quantitative real-time PCR. The critical pathway proteins were detected by western blot. The results showed that the multiplicity of infection (MOI; the ratio of bacteria to bMECs) 5:1 of S. haemolyticus for 12 h could cause cellular inflammation, which was selected to establish the inflammatory model. Incubation with 50 μg/ml PF for 12 h was the best intervention condition for cells stimulated by S. hemolyticus. Quantitative real-time PCR and western blot analysis showed that PF inhibited the activation of TLR2 and NF-κB pathway-related genes and the expression of related proteins. Western blot results showed that PF suppressed the expression of NF-κB unit p65, NF-κB unit p50, and MyD88 in bMECs stimulated by S. haemolyticus. The inflammatory response pathway and molecular mechanism caused by S. haemolyticus on bMECs are related to TLR2-mediated NF-κB signaling pathways. The anti-inflammatory mechanism of PF may also be through this pathway. Therefore, PF is expected to develop potential drugs against CoNS-induced bovine mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guibo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaoqing Mou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jinyu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
10
|
Che HY, Zhou CH, Lyu CC, Meng Y, He YT, Wang HQ, Wu HY, Zhang JB, Yuan B. Allicin Alleviated LPS-Induced Mastitis via the TLR4/NF-κB Signaling Pathway in Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:ijms24043805. [PMID: 36835218 PMCID: PMC9962488 DOI: 10.3390/ijms24043805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Dairy farming is the most important economic activity in animal husbandry. Mastitis is the most common disease in dairy cattle and has a significant impact on milk quality and yield. The natural extract allicin, which is the main active ingredient of the sulfur-containing organic compounds in garlic, has anti-inflammatory, anticancer, antioxidant, and antibacterial properties; however, the specific mechanism underlying its effect on mastitis in dairy cows needs to be determined. Therefore, in this study, whether allicin can reduce lipopolysaccharide (LPS)-induced inflammation in the mammary epithelium of dairy cows was investigated. A cellular model of mammary inflammation was established by pretreating bovine mammary epithelial cells (MAC-T) with 10 µg/mL LPS, and the cultures were then treated with varying concentrations of allicin (0, 1, 2.5, 5, and 7.5 µM) added to the culture medium. MAC-T cells were examined using RT-qPCR and Western blotting to determine the effect of allicin. Subsequently, the level of phosphorylated nuclear factor kappa-B (NF-κB) was measured to further explore the mechanism underlying the effect of allicin on bovine mammary epithelial cell inflammation. Treatment with 2.5 µM allicin considerably decreased the LPS-induced increase in the levels of the inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in cow mammary epithelial cells. Further research revealed that allicin also inhibited the phosphorylation of inhibitors of nuclear factor kappa-B-α (IκB-α) and NF-κB p65. In mice, LPS-induced mastitis was also ameliorated by allicin. Therefore, we hypothesize that allicin alleviated LPS-induced inflammation in the mammary epithelial cells of cows probably by affecting the TLR4/NF-κB signaling pathway. Allicin will likely become an alternative to antibiotics for the treatment of mastitis in cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia-Bao Zhang
- Correspondence: (J.-B.Z.); (B.Y.); Tel.: +86-431-8783-6551 (J.-B.Z.); +86-431-8783-6536 (B.Y.)
| | - Bao Yuan
- Correspondence: (J.-B.Z.); (B.Y.); Tel.: +86-431-8783-6551 (J.-B.Z.); +86-431-8783-6536 (B.Y.)
| |
Collapse
|
11
|
Fu K, Sun Y, Wang J, Cao R. Tanshinone IIa alleviates LPS-induced oxidative stress in dairy cow mammary epithelial cells by activating the Nrf2 signalling pathway. Res Vet Sci 2022; 151:149-155. [PMID: 36027684 DOI: 10.1016/j.rvsc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Mastitis is the most prevalent disease in dairy cows worldwide. Evidence has emerged that oxidative stress plays a crucial role in the development of mastitis. This study aimed to investigate the antioxidative effects of tanshinone IIa (Tan IIa) on LPS-induced oxidative stress in dairy cow mammary epithelial cells (CMECs). METHODS AND RESULTS We examined the levels of ROS and MDA in LPS-treated CMECs after supplementation with Tan IIa using detection kits and found that Tan IIa significantly inhibited the upregulation of these factors. In addition, we also found that Tan IIa significantly reversed the decrease in mitochondrial membrane potential induced by LPS. Moreover, Tan IIa improved the activities of antioxidant enzymes, which were decreased by LPS. Finally, we examined the probable pathway in which Tan IIa exerted its antioxidant effects using qPCR and western blotting and found that Tan IIa significantly activated the Keap1/Nrf2 signalling pathway. CONCLUSION These results suggest that Tan IIa might become a possible therapeutic agent for the treatment of dairy cow mastitis by weakening oxidative stress induced by LPS in CMECs.
Collapse
Affiliation(s)
- Kaiqiang Fu
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China.
| | - Yuning Sun
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China; Qingdao Hengxing University of Science and Technology, Shandong, Qingdao 266100, PR China
| | - Junbo Wang
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China
| | - Rongfeng Cao
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China.
| |
Collapse
|
12
|
Abou El-Naga HMH, El-Hashash SA, Yasen EM, Leporatti S, Hanafy NAN. Starch-Based Hydrogel Nanoparticles Loaded with Polyphenolic Compounds of Moringa Oleifera Leaf Extract Have Hepatoprotective Activity in Bisphenol A-Induced Animal Models. Polymers (Basel) 2022; 14:polym14142846. [PMID: 35890622 PMCID: PMC9324559 DOI: 10.3390/polym14142846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is an xenoestrogenic chemical used extensively in the fabrication of baby bottles, reusable plastic water bottles and polycarbonate plastic containers. The current study aims to investigate the hepatoprotective activity of Moringa oleifera Lam leaf extract (MOLE) and hydrogel NPs made of starch-MOLE-Bovine Serum Albumin (BSA) against Bisphenol A-induced liver toxicity in male rats. Fabrication and characterization of hydrogel NPs formed of starch-MOLE-BSA were investigated using FTIR, TEM, zeta potential, UV-visible spectroscopy and fluorescence spectrophotometer. The potential efficacy of hydrogel NPs was studied. Compared to the results of control, the level of liver function, oxidative stress markers and lipid profile status were remodulated in the groups treated with MOLE and hydrogel NPs (Encap. MOLE). Meanwhile, the administration of MOLE and Encap MOLE significantly increased antioxidant activity and decreased the level of apoptotic pathways. Heme oxygenase (HO)-1 and growth arrest -DNA damage-inducible gene 45b (Gadd45b) were also regulated in the groups treated with MOLE and Encap. MOLE compared to the group which received BPA alone. In the present study, MOLE and hydrogel NPs led to remarkable alterations in histological changes during BPA administration. Overall, MOLE has a potential antioxidant activity which can be used in the treatment of liver disorders.
Collapse
Affiliation(s)
- Hend Mohamed Hasanin Abou El-Naga
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta P.O. Box 31732, Egypt; (H.M.H.A.E.-N.); (S.A.E.-H.); (E.M.Y.)
| | - Samah A. El-Hashash
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta P.O. Box 31732, Egypt; (H.M.H.A.E.-N.); (S.A.E.-H.); (E.M.Y.)
| | - Ensaf Mokhtar Yasen
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta P.O. Box 31732, Egypt; (H.M.H.A.E.-N.); (S.A.E.-H.); (E.M.Y.)
| | - Stefano Leporatti
- Cnr Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy;
| | - Nemany A. N. Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
- Correspondence:
| |
Collapse
|
13
|
Wang N, Zhu Y, Li D, Basang W, Huang Y, Liu K, Luo Y, Chen L, Li C, Zhou X. 2-Methyl Nonyl Ketone From Houttuynia Cordata Thunb Alleviates LPS-Induced Inflammatory Response and Oxidative Stress in Bovine Mammary Epithelial Cells. Front Chem 2022; 9:793475. [PMID: 35174140 PMCID: PMC8842123 DOI: 10.3389/fchem.2021.793475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis is one of the most common diseases in dairy cows, causing huge economic losses to the dairy industry every year. Houttuynia Cordata Thunb (H.cordata) is a traditional Chinese herbal medicine that is widely used in clinical treatment. However, the therapeutic effect of 2-methyl nonyl ketone (MNK), the main volatile oil component in the aqueous vapor extract of H. cordata, on mastitis has been less studied. The purpose of this study was to investigate the protective effect and mechanism of MNK against lipopolysaccharide (LPS)-induced mastitis in vitro. The results showed that MNK pretreatment of the bovine mammary epithelial cell line (MAC-T) enhanced cell viability and inhibited LPS-induced reactive oxygen species (ROS) production and inflammatory response. MNK reduced the production of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor-α (TNF-α) by repressing LPS-induced activation of Toll-like receptor 4-nuclear factor-κB (TLR4-NF-κB) signaling pathway. In addition, MNK protected cells from inflammatory responses by blocking the downstream signaling of inflammatory factors. MNK also induced Heme Oxygenase-1 (HO-1) production by Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through AKT and extracellular signal-regulated kinase (ERK) pathways, thereby reducing LPS-induced oxidative damage for MAC-T cells. In conclusion, MNK played a protective role against LPS-induced cell injury. This provides a theoretical basis for the research and development of MNK as a novel therapeutic agent for mastitis.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yanbin Zhu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Dandan Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Wangdui Basang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yiqiu Huang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
- *Correspondence: Chunjin Li, ; Xu Zhou,
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
- *Correspondence: Chunjin Li, ; Xu Zhou,
| |
Collapse
|
14
|
Gupta P, Sonewane K, Chouhan S, Rajan M, Chauhan N, Rout O, Kumar A, Baghel G. Pharmacological, ethnomedicinal, and evidence-based comparative review of Moringa oleifera Lam. ( Shigru) and its potential role in the management of malnutrition in tribal regions of India, especially Chhattisgarh. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_69_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Selenium and Taurine Combination Is Better Than Alone in Protecting Lipopolysaccharide-Induced Mammary Inflammatory Lesions via Activating PI3K/Akt/mTOR Signaling Pathway by Scavenging Intracellular ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5048375. [PMID: 34938382 PMCID: PMC8687852 DOI: 10.1155/2021/5048375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.
Collapse
|
16
|
Lu J, Gu B, Lu W, Liu J, Lu J. miR-142-5p regulates lipopolysaccharide-induced bovine epithelial cell proliferation and apoptosis via targeting BAG5. Exp Ther Med 2021; 22:1425. [PMID: 34707706 PMCID: PMC8543189 DOI: 10.3892/etm.2021.10860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine mastitis is a threat to the health of the dairy cow. MicroRNAs (miRs) serve an important role in the progression of bovine mastitis, regulating immune and defense responses. The present study aimed to investigate the possible effects and mechanisms of bovine mastitis underlying miR-142-5p and Bcl-2 associated athanogene 5 (BAG5) in in vitro lipopolysaccharide (LPS)-induced models. Reverse transcription-quantitative PCR and western blotting were performed to determine mRNA and protein expression levels, respectively. ELISAs were conducted to assess the levels of cytokines and an immunofluorescence assay was performed to determine the expression of BAG5. Cell Counting Kit-8, clone formation and 5-ethynyl-2'-deoxyuridine assays were conducted to determine cell viability and proliferation of bovine mammary epithelial MAC-T cells, respectively. Flow cytometry was performed to measure MAC-T cell cycle distribution and apoptosis, and a luciferase assay was conducted to verify whether BAG5 was a target of miR-142-5p. The results indicated that miR-142-5p was upregulated in MAC-T cells treated with LPS compared with the control group. miR-142-5p mimics transfection significantly activated the cytokines TNF-α, IL-1β, IL-6 and IL-8, and significantly increased the expression levels of NF-κB signaling pathway-related proteins in LPS-treated cells. The luciferase activity of MAC-T cells treated with miR-142-5p mimics and BAG5 3'untranslated region wild type decreased, compared with mutant type. By contrast, BAG5 overexpression significantly downregulated the levels of cytokines, including TNF-α, IL-1β, IL-6 and IL-8, in LPS-treated cells. BAG5 overexpression significantly promoted cell proliferation and viability, decreased apoptosis, and regulated Caspase-3, Caspase-9, Bcl-2 and Bax expression in LPS-treated MAC-T cells, which was significantly reversed by transfection with miR-142-5p mimics. In conclusion, the results of the present study suggested that miR-142-5p may promote the progression of bovine mastitis via targeting BAG5. Therefore, the present study provided the foundations for future investigations.
Collapse
Affiliation(s)
- Jinye Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Beibei Gu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jing Liu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jiang Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
17
|
Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41:107-136. [PMID: 33509059 PMCID: PMC7906113 DOI: 10.1080/01652176.2021.1882713] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhavani Puvvala
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Ma X, Wang R, Yu S, Lu G, Yu Y, Jiang C. Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells. J Microbiol Biotechnol 2020; 30:1458-1466. [PMID: 32876071 PMCID: PMC9728330 DOI: 10.4014/jmb.2006.06030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 μg/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPSinduced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.
Collapse
Affiliation(s)
- Xiao Ma
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Ruihong Wang
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Shitian Yu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Guicong Lu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Yongxiong Yu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China,Y.X.Yu E-mail:
| | - Caode Jiang
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China,Corresponding authors C.D.Jiang Phone/Fax: +86-023-68251196 E-mail:
| |
Collapse
|
19
|
Efficacy of Natural Formulations in Bovine Mastitis Pathology: Alternative Solution to Antibiotic Treatment. J Vet Res 2020; 64:523-529. [PMID: 33367141 PMCID: PMC7734678 DOI: 10.2478/jvetres-2020-0067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Bovine mastitis is an inflammatory disease of the udder that causes important economic losses in the animal breeding and dairy product industries. Nowadays, the conventional livestock antibiotic treatments are slowly being replaced by alternative treatments. In this context, the main aim of this study was to evaluate the efficacy of natural products in alternative treatment of bovine mastitis. Material and Methods Two natural formulations with previously suggested in vitro antimicrobial effect were tested in vivo on mastitic cows. Animals with a positive diagnosis for mastitis (n = 20) were divided into three treatment groups: two groups (n = 8) were administered formulations of propolis, alcoholic extracts of Brewers Gold and Perle hops, plum lichen, common mallow, marigold, absinthe wormwood, black poplar buds, lemon balm, and essential oils of oregano, lavender, and rosemary designated R4 and R7 (differing only in the latter being more concentrated) and one group (n = 4) a conventional antibiotic mixture. In vivo efficacy of treatments was evaluated by somatic cell and standard plate counts, the treatment being considered efficacious when both parameters were under the maximum limit. Results R7 was effective in the most cases, being therapeutically bactericidal in six out of eight cows, while R4 gave good results in three out of eight cows, and conventional antibiotics cured one out of four. Conclusion These results suggest the possible therapeutic potential of these natural products in bovine mastitis.
Collapse
|
20
|
Shah KH, Oza MJ. Comprehensive Review of Bioactive and Molecular Aspects of Moringa Oleifera Lam. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1813755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kaushal H. Shah
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
21
|
Effects of Hydroxytyrosol against Lipopolysaccharide-Induced Inflammation and Oxidative Stress in Bovine Mammary Epithelial Cells: A Natural Therapeutic Tool for Bovine Mastitis. Antioxidants (Basel) 2020; 9:antiox9080693. [PMID: 32756342 PMCID: PMC7464001 DOI: 10.3390/antiox9080693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Bovine mastitis is a growing health problem, affecting both welfare of dairy cattle and milk production. It often leads to chronic infections, disturbing the quality of milk and resulting in cow death. Thus, it has a great economic impact for breeders. Methods: In this study, we evaluated the protective effect of hydroxytyrosol—a natural molecule which is the major constituent of many phyto-complexes—in an in vitro model of mastitis induced by LPS (1μg/mL). Results: Our results showed that hydroxytyrosol (10 and 25 μM) was able to prevent the oxidative stress induced by LPS (intracellular ROS, GSH and NOX-1) and the consequently inflammatory response (TNF-α, IL-1β and IL-6). The protective effect of hydroxytyrosol is also related to the enhancement of endogenous antioxidant systems (Nrf2, HO-1, NQO-1 and Txnrd1). Moreover, hydroxytyrosol showed an important protective effect on cell functionality (α-casein S1, α-casein S2 and β-casein). Conclusions: Taken together, our results showed a significant protective effect of hydroxytyrosol on oxidative stress and inflammatory response in MAC-T cells. Thus, we indicated a possible important therapeutic role for hydroxytyrosol in the prevention or management of bovine mastitis.
Collapse
|
22
|
Cheng WN, Jeong CH, Kim DH, Han SG. Short communication: Effects of moringa extract on adhesion and invasion of Escherichia coli O55 in bovine mammary epithelial cells. J Dairy Sci 2020; 103:7416-7424. [PMID: 32475678 DOI: 10.3168/jds.2019-17774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/25/2020] [Indexed: 01/27/2023]
Abstract
The objective of this study was to evaluate the antibacterial activities of extract derived from moringa leaves. In particular, the effect of moringa extract (Mor) on adhesion and invasion of Escherichia coli O55, Enterococcus faecalis, Staphylococcus simulans, and Serratia liquefaciens was evaluated in bovine mammary epithelial cells (MAC-T). Broth microdilution method, minimum inhibitory concentration and minimum bactericidal concentration assays, adhesion and invasion assays, and real-time PCR were performed. The minimum inhibitory concentration and minimum bactericidal concentration of Mor ranged from 12.5 to 50 mg/mL on 18 out of 27 tested isolates. Treatment of E. coli O55 with Mor (100 and 200 μg/mL) inhibited the adhesion and invasion on MAC-T cells via downregulation of adhesion factors (i.e., papC, f17c-A, and eaeA). Also, when MAC-T cells were pretreated with Mor (200 μg/mL, 12 h) and incubated with E. coli O55, Enterococcus faecalis, Staphylococcus simulans, or Serratia liquefaciens, both E. coli O55 and Enterococcus faecalis showed a significant decrease in adhesion and invasion. Staphylococcus simulans exhibited decreased adhesion and increased invasion. Serratia liquefaciens showed increased adhesion and decreased invasion. In addition, Mor increased mRNA expression of antioxidant enzymes (e.g., heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase 1) in MAC-T cells. In conclusion, 12.5 to 50 mg/mL of Mor exhibited antibacterial activity against 18 out of 27 tested isolates. Also, pretreatment of 200 μg/mL of Mor to MAC-T cells modulated adhesion and invasion of E. coli O55 and other mastitis-associated pathogens. Furthermore, Mor increased antioxidant capacities in MAC-T cells, but further in vivo studies are needed.
Collapse
Affiliation(s)
- W N Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - C H Jeong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - D H Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - S G Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
23
|
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1699-1713. [PMID: 32777908 PMCID: PMC7649072 DOI: 10.5713/ajas.20.0156] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.
Collapse
Affiliation(s)
- Wei Nee Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
24
|
Wu Y, Chen J, Sun Y, Dong X, Wang Z, Chen J, Dong G. PGN and LTA from Staphylococcus aureus Induced Inflammation and Decreased Lactation through Regulating DNA Methylation and Histone H3 Acetylation in Bovine Mammary Epithelial Cells. Toxins (Basel) 2020; 12:E238. [PMID: 32283626 PMCID: PMC7232188 DOI: 10.3390/toxins12040238] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis, and S. aureus generally causes subclinical mastitis which is more persistent and resistant to treatment. Peptidoglycan (PGN) and lipoteichoic acid (LTA) are cell wall components of S. aureus. Although the roles of PGN and LTA in causing inflammation are well studied, the epigenetic mechanisms of the effects of PGN and LTA on the inflammation and lactation remain poorly understood. This study characterized the gene expression profiling by RNA sequencing and investigated DNA methylation and histone acetylation in relation to inflammation and lactation in the immortalized bovine mammary epithelial cell line (MAC-T). The cells were cultured for 24 h with neither PGN nor LTA (CON), PGN (30 μg/mL), LTA (30 μg/mL), and PGN (30 μg/mL) + LTA (30 μg/mL), respectively. The number of differentially expressed genes (DEGs) and the expression of proinflammatory factors including interleukin (IL)-1β, IL-6, IL-8, chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6 of the treatments increased in the following order: CON < PGN < LTA < PGN + LTA, and the DEGs mainly enriched on the cytokine-cytokine receptor interaction and chemokine signaling pathway. LTA and PGN + LTA induced hypomethylation of global DNA by suppressing DNA methyltransferase (DNMT) activity. PGN and LTA, alone or combined, decreased the mRNA expression of casein genes (CSN1S1, CSN2, and CSN3) and the expression of two caseins (CSN2 and CSN3), and reduced histone H3 acetylation by suppressing histone acetyltransferase (HAT) activity and promoting histone deacetylase (HDAC) activity. Collectively, this study revealed that PGN and LTA induced inflammation probably due to decreasing DNA methylation through regulating DNMT activity, and decreased lactation possibly through reducing histone H3 acetylation by regulating HAT and HDAC activity in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Yongjiang Wu
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Jingbo Chen
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Xianwen Dong
- Institute for Herbivorous Livestock Research, Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| |
Collapse
|
25
|
Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients 2020; 12:nu12041031. [PMID: 32283757 PMCID: PMC7230732 DOI: 10.3390/nu12041031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to describe the protective efficacy of Moringa oleifera ethanolic extract (MOEE) against the impact of cobalt chloride (CoCl2) exposure on the rat’s kidney. Fifty male rats were assigned to five equal groups: a control group, a MOEE-administered group (400 mg/kg body weight (bw), daily via gastric tube), a CoCl2-intoxicated group (300 mg/L, daily in drinking water), a protective group, and a therapeutic co-administered group that received MOEE prior to or following and concurrently with CoCl2, respectively. The antioxidant status indices (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), oxidative stress markers (hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and malondialdehyde (MDA)), and inflammatory response markers (nitric oxide (NO), tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and C-reactive protein (CRP)) were evaluated. The expression profiles of pro-inflammatory cytokines (nuclear factor-kappa B (NF-kB) and interleukin-6 (IL-6)) were also measured by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that CoCl2 exposure was associated with significant elevations of oxidative stress and inflammatory indices with reductions in the endogenous tissue antioxidants’ concentrations. Moreover, CoCl2 enhanced the activity of the NF-κB inflammatory-signaling pathway that plays a role in the associated inflammation of the kidney. MOEE ameliorated CoCl2-induced renal oxidative damage and inflammatory injury with the suppression of the mRNA expression pattern of pro-inflammatory cytokine-encoding genes. MOEE is more effective when it is administered with CoCl2 exposure as a prophylactic regimen. In conclusion, MOEE administration exhibited protective effects in counteracting CoCl2-induced renal injury in rats.
Collapse
|
26
|
Cheng J, Zhang J, Han B, Barkema HW, Cobo ER, Kastelic JP, Zhou M, Shi Y, Wang J, Yang R, Gao J. Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells. J Dairy Sci 2020; 103:3493-3504. [PMID: 32037181 DOI: 10.3168/jds.2019-17458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
Klebsiella pneumoniae, a common cause of clinical mastitis (CM) in dairy cows, can cause severe clinical symptoms. However, its pathogenicity in the bovine mammary gland is not well understood. Our objectives were to establish an in vitro infection model of K. pneumoniae on bovine mammary epithelial cells (bMEC) to assess (1) cytopathogenicity (adhesive and invasive ability, damage and apoptosis, pro-inflammatory effects) of K. pneumoniae on bMEC and (2) the role of hypermucoviscous (HMV) phenotype on cytopathogenicity. Two K. pneumoniae isolates from CM cows, 1 HMV and 1 non-HMV, were used to infect bMEC. Adhesion and invasion ability, release of lactate dehydrogenase (LDH), ultrastructural morphology, apoptosis, transcriptional expression of pro-inflammatory genes and production of pro-inflammatory cytokines were characterized at various intervals. Both K. pneumoniae isolates rapidly adhered to and invaded bMEC within 1 h post infection (pi), causing ultrastructural damage (swelling of mitochondria and vesicle formation on cell surface) after 3 h pi and apoptotic death after 9 h pi. In addition, K. pneumoniae promoted transcriptional expression of pro-inflammatory genes IL-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α and production of IL-8, IL-1β, and TNF-α cytokines. Compared with non-HMV K. pneumoniae, the HMV isolate had lower adhesive and invasive abilities but caused more serious cellular damage. In conclusion, K. pneumoniae was cytopathogenic on bMEC and induced a pro-inflammatory response; however, the HMV phenotype did not have a key role in pathogenicity. Therefore, more attention should be paid to milk loss, and targeted prevention and treatment strategies should be implemented in Klebsiella mastitis episodes.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jv Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada, T2N 4N1
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada, T2N 4N1
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada, T2N 4N1
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 056038, P.R. China
| | - Jianfang Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|