1
|
Pezo F, Contreras MJ, Zambrano F, Uribe P, Risopatron J, Andrade AFCD, Yeste M, Sánchez R. Thawing of cryopreserved sperm from domestic animals: Impact of temperature, time, and addition of molecules to thawing/insemination medium. Anim Reprod Sci 2024; 268:107572. [PMID: 39128319 DOI: 10.1016/j.anireprosci.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
In recent decades, there has been a growing interest in optimizing the protocols intended to sperm cryopreservation in domestic animals. These protocols include initial cooling, freezing, and thawing. While different attempts have been devised to improve sperm cryopreservation, the efficiency of this reproductive biotechnology is still far from being optimal. Furthermore, while much attention in improving cooling/freezing, less emphasis has been made in how thawing can be ameliorated. Despite this, the conditions through which, upon thawing, sperm return to physiological temperatures are much relevant, given that these cells must travel throughout the female genital tract until they reach the utero-tubal junction. Moreover, the composition of the media used for artificial insemination (AI) may also affect sperm survival, which is again something that one should bear because of the long journey that sperm must make. Furthermore, sperm quality and functionality decrease dramatically during post-thawing incubation time. Added to that, the deposition of the thawed sperm suspension devoid of seminal plasma in some species during an AI is accompanied by a leukocyte migration to the uterine lumen and with it the activation of immune mechanisms. Because few reviews have focused on the evidence gathered after sperm thawing, the present one aims to compile and discuss the available information concerning ruminants, pigs and horses.
Collapse
Affiliation(s)
- Felipe Pezo
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
| | - Fabiola Zambrano
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jennie Risopatron
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Andre Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Raúl Sánchez
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Talluri TR, Kumaresan A, Paul N, Elango K, Raval K, Nag P, Legha RA, Pal Y. Heterologous Seminal Plasma Reduces the Intracellular Calcium and Sperm Viability of Cryopreserved Stallion Spermatozoa. Biopreserv Biobank 2024; 22:82-87. [PMID: 37466468 DOI: 10.1089/bio.2022.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Despite the vital role of seminal plasma (SP) in maintaining sperm function and aiding gamete interaction in many species, SP is usually removed before cryopreservation of stallion sperm to improve cryosurvival of sperm. The present study assessed if the vital sperm functional parameters of genetically superior stallions producing poor quality semen can be enhanced by the supplementation of heterologous SP from the stallion producing high quality semen. Spermatozoa from poor quality semen producing stallions were divided into three aliquots: two aliquots were supplemented with SP obtained from good quality semen producing stallions at the rate of 20% and 30%, respectively, whereas the third aliquot remained as control (0% SP) and incubated at 37°C for 30 minutes. Sperm membrane integrity, mitochondrial membrane potential (MMP), mitochondrial superoxide (mtROS) generation, and intracellular calcium status were assessed at different time intervals during incubation by flow cytometry. It was observed that the dead sperm population increased (p < 0.01) during incubation in both the 20% and 30% SP-supplemented groups. However, no significant changes were observed in MMP in both the control and treatment groups at different time intervals. Interestingly, it was found that sperm mtROS production increased (p < 0.01) during incubation in the SP-supplemented groups compared with the control group. The proportion of live spermatozoa with high intracellular calcium was reduced (p < 0.01) during incubation in the SP-incubated groups. Collectively, heterologous SP addition could not repair the damages caused by the cryopreservation and further resulted in deterioration of semen quality as observed in our study by reducing viability, increasing reactive oxygen species (ROS) production possibly due to high proportion of dead cells, or some factors (yet to be identified) that are inducive of oxidative stress in stallion spermatozoa.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, Haryana
| |
Collapse
|
3
|
Bazzano M, Zhu C, Laus F, Giambattista AD, Laghi L. Exploring the metabolome of seminal plasma in two different horse types: Light versus draft stallions. Reprod Domest Anim 2023; 58:109-116. [PMID: 36151924 PMCID: PMC10092496 DOI: 10.1111/rda.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 01/07/2023]
Abstract
The application of the 'omics' studies in the field of animal reproduction has been aimed at identifying novel biomarkers of fertility since the last few years. When assessing reproductive efficiency in horses, breed should also be taken into account as it can influence semen quality and fertility. Considering the growing interest in metabolomic analysis to evaluate male fertility, we aimed to investigate the metabolomic profile of seminal plasma in two different horse breeds. Twelve healthy stallions, n.6 American Quarter Horse (AQH) and n.6 Italian Draft Horse (IDH) stallions, regularly used for artificial insemination, were included in the study. Two semen collections, performed 30-day apart, were considered for the assessment of semen parameters including gel-free volume, spermatozoa (spz) concentration, spz progressive motility and seminal plasma analysis by 1 H-NMR.Semen characteristics differed between IDH and AQH (p < .05) as well as the first cycle conception rate that was higher in AQH than IDH (p = .001). Metabolomic analysis quantified 56 molecules in equine seminal plasma, with 11 metabolites showing different concentrations in IDH compared to AQH (p < .05).This study provided evidence of differences in seminal plasma metabolites' concentrations between studied horse types, highlighting specific metabolomic fingerprints characterizing AQH and IDH sperm.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Chenglin Zhu
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
4
|
Miró J, Catalán J, Marín H, Yánez-Ortiz I, Yeste M. Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm-PMN Binding in the Donkey. Animals (Basel) 2021; 11:1388. [PMID: 34068214 PMCID: PMC8153123 DOI: 10.3390/ani11051388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
While artificial insemination (AI) with frozen-thawed sperm results in low fertility rates in donkeys, the addition of seminal plasma, removed during cryopreservation, partially counteracts that reduction. Related to this, an apparent inflammatory reaction in jennies is induced following AI with frozen-thawed sperm, as a high amount of polymorphonuclear neutrophils (PMN) are observed within the donkey uterus six hours after AI. While PMN appear to select the sperm that ultimately reach the oviduct, two mechanisms, phagocytosis and NETosis, have been purported to be involved in that clearance. Remarkably, sperm interacts with PMN, but the presence of seminal plasma reduces that binding. As seminal plasma is a complex fluid made up of different molecules, including proteins, this study aimed to evaluate how different seminal plasma fractions, separated by molecular weight (<3, 3-10, 10-30, 30-50, 50-100, and >100 kDa), affect sperm-PMN binding. Sperm motility, viability, and sperm-PMN binding were evaluated after 0 h, 1 h, 2 h, 3 h, and 4 h of co-incubation at 38 °C. Two seminal plasma fractions, including 30-50 kDa or 50-100 kDa proteins, showed the highest sperm motility and viability. As viability of sperm not bound to PMN after 3 h of incubation was the highest in the presence of 30-50 and 50-100 kDa proteins, we suggest that both fractions are involved in the control of the jenny's post-breeding inflammatory response. In conclusion, this study has shown for the first time that specific fractions rather than the entire seminal plasma modulate sperm-PMN binding within the donkey uterus. As several proteins suggested to be involved in the control of post-AI endometritis have a molecular weight between 30 and 100 kDa, further studies aimed at determining the identity of these molecules and evaluating their potential effect in vivo are much warranted.
Collapse
Affiliation(s)
- Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Henar Marín
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
| | - Iván Yánez-Ortiz
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| |
Collapse
|
5
|
Efficiency of Tris-Based Extender Steridyl for Semen Cryopreservation in Stallions. Animals (Basel) 2020; 10:ani10101801. [PMID: 33020383 PMCID: PMC7601834 DOI: 10.3390/ani10101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The cryopreservation and long-term storage of semen is one of the methods for accelerated improvement of the genetic qualities of animals. However, horse breeders prefer to use fresh or chilled semen, as the fertilizing capacity of frozen equine semen is much lower. It is important to find extenders, or a combination of extenders, that will improve semen survival after freezing. It is also important that the extender can be easily and simply prepared for use. Steridyl is a concentrate to which you just need to add sterilized water. This extender was developed for ruminants. In this study we tested Steridyl for freezing stallion semen. The motility, morphology, energy metabolism, DNA damage, and fertility of sperm frozen in Steridyl were evaluated. As a result, Steridyl was shown to be a good extender for equine semen freezing. Abstract The fertilizing ability of stallion sperm after freezing is lower than in other species. The search for the optimal extender, combination of extenders, and the freezing protocol is relevant. The aim of this study was to compare lactose-chelate-citrate-yolk (LCCY) extender, usually used in Russia, and Steridyl® (Minitube) for freezing sperm of stallions. Steridyl is a concentrated extender medium for freezing ruminant semen. It already contains sterilized egg yolk. Semen was collected from nine stallions, aged from 7 to 12 years old. The total and progressive motility of sperm frozen in Steridyl was significantly higher than in semen frozen in LCCY. The number of spermatozoa with normal morphology in samples frozen in LCCY was 60.4 ± 1.72%, and with Steridyl, 72.4 ± 2.10% (p < 0.01). Semen frozen in Steridyl showed good stimulation of respiration by 2.4-DNP, which indicates that oxidative phosphorylation was retained after freezing–thawing. No differences among the extenders were seen with the DNA integrity of spermatozoa. Six out of ten (60%) mares were pregnant after artificial insemination (AI) by LCCY frozen semen, and 9/12 (75%) by Steridyl frozen semen. No differences among extenders were seen in pregnancy rate. In conclusion, Steridyl was proven to be a good diluent for freezing stallion semen, even though it was developed for ruminants.
Collapse
|
6
|
Bubenickova F, Postlerova P, Simonik O, Sirohi J, Sichtar J. Effect of Seminal Plasma Protein Fractions on Stallion Sperm Cryopreservation. Int J Mol Sci 2020; 21:E6415. [PMID: 32899253 PMCID: PMC7504567 DOI: 10.3390/ijms21176415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Seminal plasma (SP) is the natural environment for spermatozoa and contains a number of components, especially proteins important for successful sperm maturation and fertilization. Nevertheless, in standard frozen stallion insemination doses production, SP is completely removed and is replaced by a semen extender. In the present study, we analyzed the effects of the selected seminal plasma protein groups that might play an important role in reducing the detrimental effects on spermatozoa during the cryopreservation process. SP proteins were separated according to their ability to bind to heparin into heparin-binding (Hep+) and heparin-non-binding (Hep-) fractions. The addition of three concentrations-125, 250, and 500 µg/mL-of each protein fraction was tested. After thawing, the following parameters were assessed: sperm motility (by CASA), plasma membrane integrity (PI staining), and acrosomal membrane integrity (PNA staining) using flow cytometry, and capacitation status (anti-phosphotyrosine antibody) using imaging-based flow cytometry. Our results showed that SP protein fractions had a significant effect on the kinematic parameters of spermatozoa and on a proportion of their subpopulations. The 125 µg/mL of Hep+ protein fraction resulted in increased linearity (LIN) and straightness (STR), moreover, with the highest values of sperm velocities (VAP, VSL), also this group contained the highest proportion of the fast sperm subpopulation. In contrast, the highest percentage of slow subpopulation was in the groups with 500 µg/mL of Hep+ fraction and 250 µg/mL of Hep- fraction. Interestingly, acrosomal membrane integrity was also highest in the groups with Hep+ fraction in concentrations of 125 µg/mL. Our results showed that the addition of protein fractions did not significantly affect the plasma membrane integrity and capacitation status of stallion spermatozoa. Moreover, our results confirmed that the effect of SP proteins on the sperm functionality is concentration-dependent, as has been reported for other species. Our study significantly contributes to the lack of studies dealing with possible use of specific stallion SP fractions in the complex puzzle of the improvement of cryopreservation protocols. It is clear that improvement in this field still needs more outputs from future studies, which should be focused on the effect of individual SP proteins on other sperm functional parameters with further implication on the success of artificial insemination in in vivo conditions.
Collapse
Affiliation(s)
- Filipa Bubenickova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Jitka Sirohi
- Department of Statistics, Faculty of Economics and Management, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Jiri Sichtar
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
| |
Collapse
|