1
|
Heidari F, Rahbaran M, Mirzaei A, Mozafari Tabatabaei M, Shokrpoor S, Mahjoubi F, Ara MS, Akbarinejad V, Gharagozloo F. The study of a hermaphroditic sheep caused by a mutation in the promoter of SRY gene. Vet Anim Sci 2023; 21:100308. [PMID: 37593675 PMCID: PMC10428133 DOI: 10.1016/j.vas.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
In mammals, sex-determining region Y (SRY) gene plays vital role as a transcription factor to regulate the expression of the genes contributing to development of male genitals. Any mutation disrupting expression of SRY gene can cause disorders of sex development (DSDs). In this study, the examination of a hermaphroditic (female-like) Shal sheep which was referred for infertility is described. Initially, the reproductive system of the sheep was histologically and anatomically assessed. Karyotyping was used to determine the real gender of the animal. Sex hormones including progesterone, estradiol, and testosterone were measured by enzyme-linked immunosorbent assay (ELISA). Eventually, promoter part and SRY gene were sequenced and aligned to detect any potential mutation using NCBI data base. Although anatomical inspection led to identification of uterus, ovary, and enlarged clitoris as well as testes in the sheep, the karyotyping results interestingly revealed that the animal was genetically a male. Although the sheep had both male and female gonads, there were no overt signs of reproductive behavior and gamete production was not observed. Plasma steroid hormone levels were reported to be at basal levels. Additionally, a mutation was detected on the promoter of the SRY gene. In conclusion, the case implies that mutation on the promoter part of SRY gene could disrupt sexual development of the fetus culminating in DSDs in the sheep.
Collapse
Affiliation(s)
- Farid Heidari
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Tehran, Iran
| | - Mohaddeseh Rahbaran
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Tehran, Iran
| | - Asieh Mirzaei
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Tehran, Iran
| | - Mehran Mozafari Tabatabaei
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Tehran, Iran
- Department of Animal Sciences, Shahid Bahonar University of Kerman, Kerman, Kerman, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Genetic, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Tehran, Iran
| | - Mehdi Shams Ara
- Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Tehran, Iran
| | - Faramarz Gharagozloo
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Tehran, Iran
| |
Collapse
|
2
|
Analyses of Molecular Characteristics and Enzymatic Activities of Ovine HSD17B3. Animals (Basel) 2021; 11:ani11102876. [PMID: 34679897 PMCID: PMC8532638 DOI: 10.3390/ani11102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
17β-hydroxysteroid dehydrogenase type 3 (HSD17B3) converts androstenedione (A4) into testosterone (T), which regulates sex steroid production. Because various mutations of the HSD17B3 gene cause disorder of sex differentiation (DSD) in multiple mammalian species, it is very important to reveal the molecular characteristics of this gene in various species. Here, we revealed the open reading frame of the ovine HSD17B3 gene. Enzymatic activities of ovine HSD17B3 and HSD17B1 for converting A4 to T were detected using ovine androgen receptor-mediated transactivation in reporter assays. Although HSD17B3 also converted estrone to estradiol, this activity was much weaker than those of HSD17B1. Although ovine HSD17B3 has an amino acid sequence that is conserved compared with other mammalian species, it possesses two amino acid substitutions that are consistent with the reported variants of human HSD17B3. Substitutions of these amino acids in ovine HSD17B3 for those in human did not affect the enzymatic activities. However, enzymatic activities declined upon missense mutations of the HSD17B3 gene associated with 46,XY DSD, affecting amino acids that are conserved between these two species. The present study provides basic information and tools to investigate the molecular mechanisms behind DSD not only in ovine, but also in various mammalian species.
Collapse
|
3
|
Perosomus Elumbis in Piglets: Pathological, Radiological and Cytogenetic Findings. Animals (Basel) 2021; 11:ani11041132. [PMID: 33921043 PMCID: PMC8071472 DOI: 10.3390/ani11041132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Perosomus elumbis (PE) is a rare congenital condition characterized by agenesis of the lumbar, sacral and coccygeal vertebrae. Perosomus elumbis has rarely been reported in literature as morphological description of singles or few cases. Here we report the first extensive description of eight cases of PE detected in two consecutive litters from the same parents of Casertana pig breed. In August 2018, eight piglets were investigated for multiple malformations. All malformed animals, but one, died in the first day of life. The survivor piglet died at 23 days of age. Pathological, radiological and cytogenetic examination was performed. Furthermore, a farm epidemiological investigation was carried out to investigate the percentage of piglets born dead or with malformations in 2018. The radiological and pathological exams showed skeletal abnormalities at the spinal cord level and visceral malformations. Cytogenetic investigations showed a normal chromosome arrangement. Finally, epidemiological investigation revealed a low prevalence of malformations in newborn pigs, equal to 0.5% of the total birth rate of the farm. Our findings report the first extensive description of PE cases in pigs and suggest an underestimation of this malformation in veterinary medicine. Our findings also suggest a specific genetic etiological basis as cause of PE in pigs and exclude chromosomal abnormalities. Further studies will be performed to confirm this hypothesis.
Collapse
|
4
|
Sperm Global DNA Methylation (SGDM) in Semen of Healthy Dogs. Vet Sci 2021; 8:vetsci8030050. [PMID: 33802963 PMCID: PMC8002840 DOI: 10.3390/vetsci8030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Male infertility is an emerging problem in both humans and animals, and the knowledge of its causes is the first step to identifying new diagnostic and therapeutic strategies. In humans, alteration of sperm DNA methylation have been related to poor quality semen, impaired seminal parameters, azoospermia and reduced fertility. Although semen analysis is routinely used to evaluate the male reproductive potential in the canine species, no authors have attempted to relate semen characteristics to the sperm global DNA methylation (SGDM). The aim of this study was to evaluate the SGDM level in healthy dogs and to correlate it with semen parameters that are currently used in dog semen analyses. Conventional and unconventional (sperm DNA fragmentation and SGDM) seminal parameters of thirty dogs from different breeds were evaluated. A positive correlation was found between SGDM and sperm concentration (r = 0.41; p < 0.05), and total sperm count (r = 0.61; p < 0.001); SGDM was significantly lower in oligozoospermic vs non-oligozoospermic dogs (4.3% vs. 8.7%; p < 0.005). Our findings suggest that SGDM levels are related to conventional seminal parameters, and could be used as a marker of testis function and spermatogenesis in dogs.
Collapse
|
5
|
Chromosome Abnormalities and Fertility in Domestic Bovids: A Review. Animals (Basel) 2021; 11:ani11030802. [PMID: 33809390 PMCID: PMC8001068 DOI: 10.3390/ani11030802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In domestic bovids, numerical autosome abnormalities have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. However, numerical abnormalities involving sex chromosomes and structural (balanced) chromosome anomalies have been more frequently detected because they are most often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape animal selection, with subsequent deleterious effects on fertility, especially in female carriers. Abstract After discovering the Robertsonian translocation rob(1;29) in Swedish red cattle and demonstrating its harmful effect on fertility, the cytogenetics applied to domestic animals have been widely expanded in many laboratories in order to find relationships between chromosome abnormalities and their phenotypic effects on animal production. Numerical abnormalities involving autosomes have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. In contrast, numerical sex chromosome abnormalities and structural chromosome anomalies have been more frequently detected in domestic bovids because they are often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape selection, with subsequent harmful effects on fertility, especially in female carriers. Chromosome abnormalities can also be easily spread through the offspring, especially when using artificial insemination. The advent of chromosome banding and FISH-mapping techniques with specific molecular markers (or chromosome-painting probes) has led to the development of powerful tools for cytogeneticists in their daily work. With these tools, they can identify the chromosomes involved in abnormalities, even when the banding pattern resolution is low (as has been the case in many published papers, especially in the past). Indeed, clinical cytogenetics remains an essential step in the genetic improvement of livestock.
Collapse
|
6
|
Peretti V, Satué K, Ciotola F, Cristarella S, De Majo M, Biondi V, D’Anza E, Albarella S, Quartuccio M. An Unusual Case of Testicular Disorder in Sex Development of Arabian Mare (64,XX SRY-Negative). Animals (Basel) 2020; 10:ani10111963. [PMID: 33113813 PMCID: PMC7693820 DOI: 10.3390/ani10111963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary An interesting case of a horse with an XX, SRY-negative disorder of sexual development (DSD) is reported in this paper. In particular, the animal showed the development of both male and female portions of reproductive organs. The possible genetic background of this abnormality is also discussed. Abstract A 3-year-old Arabian mare underwent medical examinations due to the presence of abnormalities of the reproductive apparatus and stallion behavior (nervous temperament, aggressiveness, masculine attitude). During the clinical visit, an anovulvar distance shorter than normal was observed; moreover, vulvar lips were dorsally fused except for the lower neckline, showing a blind ending from which a penis-like structure protruded. The ultrasound examination revealed the presence of a cervix and corpus of a uterus, hypoplastic uterine horns, and small gonads with an echogenicity similar to a testis. Blood testosterone levels ranged from 0.4 to 0.6 ng/mL. Cytogenetic analysis showed a normal female karyotype (2n = 64,XX), while PCR amplification of SRY and ZFY genes revealed the absence of a Y chromosome. At necroscopic examination, internal genitalia arising from the genital ridge in the form of masculine type structures were found, while those deriving from the Mullerian ducts were of feminine type. In addition, an infundibular portion of the salpinx at the cranial pole of the gonads was found. This is the first case in equine species of DSD 2n = 64,XX SRY-negative, with the simultaneous presence of male (hypoplastic testicles, epididymal portions, and a penis-like structure) and female (cervix, horn and body of a hypoplastic uterus) genital structures.
Collapse
Affiliation(s)
- Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (V.P.); (E.D.); (S.A.)
| | - Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, 46115 Valencia, Spain;
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (V.P.); (E.D.); (S.A.)
- Correspondence: ; Tel.: +39-081-2536502; Fax: +39-081-292981
| | - Santo Cristarella
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (S.C.); (M.D.M.); (V.B.); (M.Q.)
| | - Massimo De Majo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (S.C.); (M.D.M.); (V.B.); (M.Q.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (S.C.); (M.D.M.); (V.B.); (M.Q.)
| | - Emanuele D’Anza
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (V.P.); (E.D.); (S.A.)
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (V.P.); (E.D.); (S.A.)
| | - Marco Quartuccio
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (S.C.); (M.D.M.); (V.B.); (M.Q.)
| |
Collapse
|
7
|
Albarella S, Lorenzi LD, Rossi E, Prisco F, Riccardi MG, Restucci B, Ciotola F, Parma P. Analysis of XX SRY-Negative Sex Reversal Dogs. Animals (Basel) 2020; 10:ani10091667. [PMID: 32947906 PMCID: PMC7552623 DOI: 10.3390/ani10091667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The study of XX SRY-negative sex reversal cases is of great interest because testicular tissue develops in these subjects in the absence of SRY gene, thus allowing us to deepen the knowledge of all the other genes involved in the development of testes and the structures related to the male reproductive apparatus. This paper reports the results of the study of four new canine disorders of sex development (DSDs) XX SRY-negative cases in which 11 copy number variations (CNVs) are observed, five of which are never described. Abstract Impaired fertility associated with disorders of sex development (DSDs) due to genetic causes in dogs are more and more frequently reported. Affected dogs are usually of specific breeds thus representing a cause of economic losses for breeders. The aim of this research is to report the clinical, cytogenetic and molecular genetic findings of four XX SRY-negative DSD dog cases. All the subjects showed a female aspect and the presence of an enlarged clitoris with a penis bone. Morphopathological analyses performed in three of the four cases showed the presence of testes in two cases and ovotestis in another. Conventional and R-banded cytogenetic techniques were applied showing that no chromosome abnormalities were involved in these DSDs. CGH arrays show the presence of 11 copy number variations (CNVs), one of which is a duplication of 458 Kb comprising the genomic region between base 17,503,928 and base 17,962,221 of chromosome 9 (CanFam3 genome assembly). This CNV, confirmed also by qPCR, includes the promoter region of SOX9 gene and could explain the observed phenotype.
Collapse
Affiliation(s)
- Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
- Correspondence: ; Tel.: +39-081-2536502; Fax: +39-081-292981
| | - Lisa De Lorenzi
- Department of Agricultural and Environmental Sciences, Milano University, via Celoria 2, 20133 Milan, Italy; (L.D.L.); (P.P.)
| | - Elena Rossi
- Department of Molecular Medicine, Pavia University, via Forlanini 12, 27100 Pavia, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
| | - Marita Georgia Riccardi
- Experimental Zooprophylactic Institute of Southern Italy, via Salute 2, 80055 Portici, Italy;
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
| | - Pietro Parma
- Department of Agricultural and Environmental Sciences, Milano University, via Celoria 2, 20133 Milan, Italy; (L.D.L.); (P.P.)
| |
Collapse
|