1
|
Saratsi A, Samartzi F, Tsiokos D, Theodosiadou EK, Panagiotidis I, Ligda C, Rekkas CA. Effect of Three Commercially Available Extenders Containing Phospholipids of Different Sources on Skopelos Buck Liquid-Stored Sperm Quality. Vet Sci 2024; 11:494. [PMID: 39453086 PMCID: PMC11512305 DOI: 10.3390/vetsci11100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The effect of four extenders on buck semen quality parameters was examined during a 48 h liquid storage. Semen was collected from six Skopelos bucks and diluted in the following extenders, containing: soy lecithin (SL, OviXcell®), plant phospholipids (PP, AndroMed®), egg yolk lecithin (EY, Steridyl®), or no phospholipids (basic extender). Samples were stored at 5 °C for 48 h and assessed at 0, 24 and 48 h for viability (eosin-nigrosin), acrosome integrity (SpermBlue®), membrane functional integrity (HOST), mitochondrial function (Rhodamine 123/SYBR-14/PI) and motility parameters (CASA). No significant reduction in total or progressive spermatozoa motility and mitochondrial function was observed at 24 h, whereas they all dropped significantly at 48 h, in all extenders. Spermatozoa viability, cell membrane functionality and acrosome integrity dropped progressively (0 h > 24 h > 48 h) in all groups. No significant difference among extenders was observed concerning spermatozoa mitochondrial function. Overall, spermatozoa viability, cell membrane functionality and acrosome integrity were higher in the three commercial extenders, compared to the basic extender. SL and EY extenders (OviXcell® and Steridyl®, respectively) preserved viability more effectively than the PP extender (AndroMed®). Total motility was higher in the PP extender, compared to the SL extender. Spermatozoa acrosome integrity tended to be higher in the EY extender compared to all the other extenders. Further investigation of the protective potential of different types of cryoprotectants on liquid buck semen storage is important.
Collapse
Affiliation(s)
- Aikaterini Saratsi
- Veterinary Research Institute, Hellenic Agricultural Organization-DIMITRA, ELGO Campus, Thermi, 57001 Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| | - Foteini Samartzi
- Veterinary Research Institute, Hellenic Agricultural Organization-DIMITRA, ELGO Campus, Thermi, 57001 Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| | - Dimitrios Tsiokos
- Research Institute of Animal Science, Hellenic Agricultural Organization-DIMITRA, Paralimni, 58100 Giannitsa, Greece;
| | - Ekaterini K. Theodosiadou
- Laboratory of Physiology, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Ioannis Panagiotidis
- Department of Animal Reproduction & Artificial Insemination, Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, 9 Verias Str., 57008 Thessaloniki, Greece;
| | - Christina Ligda
- Veterinary Research Institute, Hellenic Agricultural Organization-DIMITRA, ELGO Campus, Thermi, 57001 Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| | - Constantinos A. Rekkas
- Veterinary Research Institute, Hellenic Agricultural Organization-DIMITRA, ELGO Campus, Thermi, 57001 Thessaloniki, Greece; (A.S.); (F.S.); (C.L.)
| |
Collapse
|
2
|
Gangwar C, Kumar A, Gururaj K, Kumar A, Qureshi S, Kumar M, Mishra AK, Ranjan R. Bolstering Buck Fertility: The Impact of Asparagus racemosus Aqueous Extract on Semen Cryopreservation and Antioxidant Defense System. Biopreserv Biobank 2024. [PMID: 38828507 DOI: 10.1089/bio.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Importance of Study: Semen cryopreservation results in sperm damage due to lipid peroxidation or oxidative stress, leading to a decrease in conception rate. The sperm damage during cryopreservation can be minimized with the use of suitable antioxidant supplements in semen diluent. Some herbs have potent antioxidant potential and can be used in semen diluent to protect the spermatozoa. Objective: Hence, the investigation was planned to evaluate the effect of Asparagus racemosus (A. racemosus) aqueous extract on buck semen quality during cryopreservation. Methodology: In the current study, semen was collected from eight Sirohi bucks, and from each buck, 8 ejaculates were collected. Good-quality semen samples were pooled during each collection. Pooled semen samples were then divided into four equal parts and diluted in TRIS buffer containing different concentrations of A. racemosus aqueous extract (different groups, i.e., G I -5 mg, G II -2.5 mg, G III -1.25 mg, and G IV -0 mg of A. racemosus aqueous extract in 1 mL TRIS buffer). All the diluted semen samples were kept at equilibration temperature (5°C) for 2 hours and then cryopreserved by the manual method. Semen samples were evaluated for various sperm characteristics and antioxidant status before and after cryopreservation. Results: Asparagus racemosus aqueous extract showed significant (p < 0.05) enhancement of sperm viability, sperm motility, acrosomal integrity, and plasma membrane integrity, whereas it reduced sperm abnormality. Furthermore, in the experimental groups, the antioxidant gene expression was found to be increased compared to that of the treatment group. G III (p < 0.05) showed significantly better results in terms of sperm viability, sperm motility, acrosomal integrity, and plasma membrane integrity. Conclusion: Asparagus racemosus aqueous extract has the antioxidant potential to protect buck spermatozoa during semen cryopreservation.
Collapse
Affiliation(s)
- Chetna Gangwar
- Associate Professor, Veterinary Clinical Complex, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan-DUVASU, Mathura, India
| | - Ashok Kumar
- Animal Health Division, ICAR-CIRG, Mathura, India
| | - K Gururaj
- Animal Health Division, ICAR-CIRG, Mathura, India
| | - Anshuman Kumar
- Department of Animal Genetics and Breeding, FVAS, Banaras Hindu University, Mirzapur, India
| | | | - Manish Kumar
- Associate Professor, Veterinary Clinical Complex, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan-DUVASU, Mathura, India
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats (ICAR-CIRG), Mathura, India
| | | | - R Ranjan
- Associate Professor, Veterinary Clinical Complex, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan-DUVASU, Mathura, India
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats (ICAR-CIRG), Mathura, India
| |
Collapse
|
3
|
Li Z, Sun J, Li K, Qin J, Sun Y, Zeng J, El-Ashram S, Zhao Y. Metabolomic analysis reveals spermatozoa and seminal plasma differences between Duroc and Liang guang Small-spotted pig. Front Vet Sci 2023; 9:1078928. [PMID: 36686181 PMCID: PMC9853278 DOI: 10.3389/fvets.2022.1078928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The Liang guang Small-spotted pig is a well-known Chinese indigenous pig that is valued for its exceptional meat quality. However, the Liang guang Small-spotted pig has a lower semen storage capacity, shorter storage time and worse semen quality compared to Duroc. Pig sperm used for artificial insemination (AI) loses part of vitality and quality when being stored in commercial solutions. Serious vitality losses and short shelf life of the semen are particularly prominent in Liang guang Small-spotted pig. In this study, the metabolites in seminal plasma and spermatozoa of Duroc and Liang guang Small-spotted pigs were identified using UHPLC-Q-TOF/MS technology. The findings indicated forty distinct metabolites concentrating on energy metabolic substrates and antioxidant capacity in Liang guang Small-spotted pig and Duroc seminal plasma, including D-Fructose, succinate, 2-dehydro-3-deoxy-d-gluconate, alanine betaine, citrate, carnitine, acetylcarnitine and so on. Seventeen different metabolites were explored, with a focus on glycerophospholipid metabolism in Liang guang Small-spotted pig and Duroc spermatozoa, primarily including glycerol 3-phosphate, acetylcarnitine, phosphatidylcholine (PC) 16:0/16:0, palmitoyl sphingomyelin, acetylcholine, choline, glycerophosphocholine, betaine, L-carnitine, creatinine and others. This study reveals the metabolite profile of spermatozoa and seminal plasma among different pig breeds and might be valuable for understanding the mechanisms that lead to sperm storage capacity. Metabolites involved in energy metabolism, antioxidant capacity and glycerophospholipid metabolism might be key to the poor sperm storage capacity in Liang guang Small-spotted pig.
Collapse
Affiliation(s)
- Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jingshuai Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kebiao Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiali Qin
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Yanmei Sun
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co., Ltd., Guangzhou, China
| | | | - Yunxiang Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China,Guangxi Yangxiang Co., Ltd., Guigang, China,*Correspondence: Yunxiang Zhao ✉
| |
Collapse
|
4
|
Effect of Procyanidin on Canine Sperm Quality during Chilled Storage. Vet Sci 2022; 9:vetsci9110588. [PMID: 36356065 PMCID: PMC9697366 DOI: 10.3390/vetsci9110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Procyanidin (PC) is a polyphenolic compound with antioxidant activity. The purpose of this study was to determine the influence of PC on canine sperm quality after 72 h of storage at 4 °C. The collected ejaculates were separated into four equal aliquots and treated with various concentrations of PC (0, 10, 30, and 50 μg/mL) in Tris-citric-fructose-egg yolk (TCFE) extender and stored at 4 °C for 72 h. The findings revealed that 30 μg/mL PC was the optimum concentration for significantly improving sperm motility (p < 0.05). Sperm samples treated with 30 μg/mL PC had substantially greater plasma membrane integrity, acrosome integrity, and mitochondrial membrane potential than the control group (p < 0.05). Furthermore, T-AOC and the expression levels of superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx1) genes were significantly higher in sperm treated with 30 μg/mL PC than those in control (p < 0.05). In summary, this study discovered that adding PC to the TCFE extender enhanced sperm quality and that 30 μg/mL PC was the optimal concentration for canine sperm when stored at 4 °C.
Collapse
|
5
|
Wang Y, Sun Q, Liu J, Wang L, Wu X, Zhao Z, Wang N, Gao Z. Suaeda salsa Root-Associated Microorganisms Could Effectively Improve Maize Growth and Resistance under Salt Stress. Microbiol Spectr 2022; 10:e0134922. [PMID: 35950864 PMCID: PMC9430135 DOI: 10.1128/spectrum.01349-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Root-associated microorganisms are widely recognized as playing an important role in mitigating stress-induced damage to plants, but the responses of rhizosphere microbial communities after inoculation and their relationship with plant responses remain unclear. In this study, the bacterium Providencia vermicola BR68 and the fungus Sarocladium kiliense FS18 were selected from among 91 strains isolated from the halophyte Suaeda salsa to interact with maize seedlings under salt stress. The results showed that compared with NaCl-only treatment, inoculation with strains BR68 and FS18 significantly improved the growth, net photosynthetic rate, and antioxidant enzyme activities of maize; significantly reduced proline content and generation rate of reactive oxygen species (ROS); and alleviated oxidative stress and osmotic stress. Moreover, inoculation with these two strains increased the activities of soil microbiome enzymes such as sucrase, catalase, and fluorescein diacetate hydrolase, which improved maize physiologies and promoted maize growth under salt stress. In addition, these inoculated strains significantly affected the abundance of certain genera, and the correlation trends for these genera with soil properties and maize physiologies were similar to those of these inoculated strains. Strain BR68 was indirectly associated with bacterial communities through BR-specific biomarkers, and bacterial communities and soil properties explained most of the variation in maize physiologies and growth. Inoculation of strain FS18 was directly associated with variations in soil properties and maize physiologies. The two strains improved maize growth under salt stress and alleviated stress damage in maize in different ways. The links among salt-tolerant microorganisms, soil, and plants established in this study can inform strategies for improving crop cultivation in salinized lands. IMPORTANCE This study demonstrates that halophyte root-associated microorganisms can promote crop tolerance to salt stress and clarify the mechanism by which the strains work in rhizosphere soil. The links among salt-tolerant microorganisms, soil, and plants established in this study can inform strategies for improving crop cultivation in salinized lands.
Collapse
Affiliation(s)
- Yongdong Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jiai Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Lingshuai Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Zhenyi Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Lan Q, Xue L, Cao J, Xie Y, Xiao T, Fang S. Caffeic Acid Phenethyl Ester (CAPE) Improves Boar Sperm Quality and Antioxidant Capacity in Liquid Preservation (17°C) Linked to AMPK Activity Maintenance. Front Vet Sci 2022; 9:904886. [PMID: 35754532 PMCID: PMC9219730 DOI: 10.3389/fvets.2022.904886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid preservation of boar sperm is crucial for artificial insemination application in pig production. However, time-dependent oxidative damage to sperm is one of the major challenges during the liquid preservation period. Caffeic acid phenethyl ester (CAPE) possesses excellent antioxidant properties and has potential therapeutic use in reproductive organ injury linked to oxidative stress. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) involves in modulating the cellular redox state and exerts a beneficial effect on sperm preservation. In the present study, we firstly assessed different concentrations of CAPE that affect sperm quality during liquid storage to determine the appropriate addition. To further investigate whether CAPE exerts protective effects on boar sperm through modulation of AMPK activity, sperm quality parameters, antioxidant capacity, and marker protein expressions were evaluated under co-incubation with H2O2. The results showed that sperm treated with 210 μmol/L CAPE exhibited the highest motion parameters (total motility and progressive motility) and best functional integrity (mitochondrial activity, plasma membrane integrity, and acrosomal integrity). Even in the presence of H2O2, the addition of 210 μmol/L CAPE not only significantly improved sperm quality parameters, but also elevated CAT, SOD, and GSH-Px activities to enhance sperm antioxidant capacity. In addition, we found that CAPE could affect the protein activities of AMPK, phospho-AMPK α (p-AMPK), SOD, and Caspase-3 regardless of whether H2O2 is present or not. Our findings suggested that CAPE has potential application in liquid preservation of boar sperm and preliminary indicated that CAPE-induced improvement of sperm quality and antioxidant capacity should be mediated through conservation of AMPK activity. Further studies are required to illustrate the specific mechanism by which CAPE attenuates oxidative stress-mediated damages dependent on AMPK activity.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li'e Xue
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacheng Cao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingyu Xie
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
A 150 kDa Protein Derived from Bull Seminal Plasma Extended the Survival Time of Kacang Goat Sperm Stored at 5°C. Vet Med Int 2021; 2021:1470209. [PMID: 34840715 PMCID: PMC8616707 DOI: 10.1155/2021/1470209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Artificial insemination has proven to be an effective method for increasing population size and genetic quality of Kacang goats. However, innovation is required to maintain the quality of Kacang goat semen in storage. This study aimed to examine the effects of supplementing the 150 kDa protein assumed as IGF-I complex derived from bull seminal plasma in skim milk-egg yolk extender on the quality of Kacang goat sperm stored at 5°C. Twelve ejaculates collected from three Kacang goats were divided into three groups. In the control group (T0), the ejaculates were extended with skim milk-egg yolk only. In the treatment groups (T1 and T2), the ejaculates were extended with skim milk-egg yolk supplemented with the IGF-I complex protein at 12 μg and 24 μg/100 mL, respectively. The extended semen was stored at 5°C, and the viability, motility, intactness of the plasma membrane, malondialdehyde concentration, and apoptotic sperm percentage were evaluated daily for five days. The results showed that the T1 was the most effective treatment for maintaining Kacang goat semen at a quality acceptable for artificial insemination over five days of storage at 5°C. However, the T0 and T2 groups retained acceptable qualities for only three days at 5°C. It could be concluded that supplementation of 12 μg of the 150 kDa protein derived from bull seminal plasma per 100 mL extender successfully extended the life span of Kacang goat sperm for five days.
Collapse
|
8
|
Fang X, Li W, Yuan H, Chen H, Bo C, Ma Q, Cai R. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:840-850. [PMID: 34534799 DOI: 10.1016/j.plaphy.2021.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 05/24/2023]
Abstract
As one of the largest families of transcription factors in plants, the WRKY proteins play crucial roles in plant growth and development, defense regulation and stress responses. In this research, ZmWRKY86 encoding a WRKY transcription factor was cloned from maize (Zea mays L.). ZmWRKY86 expression was up-regulated by salt stress. ZmWRKY86 is a nuclear protein and has no transcriptional activation ability in yeast. ZmWRKY86 can specifically bind to W-box (TTGACC), which was confirmed by electrophoretic mobility shift assay (EMSA) and dual-LUC experiments. As compared with control, the wrky86 mutants showed enhanced plant tolerance to salt stress with higher survival rate, catalase activity and K+ content, but lower malondialdehyde accumulation, relative electrical leakage level and Na+ content under salt-stress condition. Transcriptome and quantitative real-time PCR analyses indicated that the mutation of ZmWRKY86 led to significant changes in the expression of stress-related genes in maize. Further assays showed that ZmWRKY86 directly interacted with the promoter of two salt stress-related genes Zm00001d020840 and Zm00001d046813. In summary, we identified a WRKY transcription factor ZmWRKY86 that participates in salt stress regulation through controlling the expression of stress-related genes.
Collapse
Affiliation(s)
- Xiu Fang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haotian Yuan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haowei Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Bo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Cooled storage of semen from livestock animals (Part II): Camelids, goats, and sheep. Anim Reprod Sci 2021; 234:106855. [PMID: 34583145 DOI: 10.1016/j.anireprosci.2021.106855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022]
Abstract
This review is part of the Festschrift in honor of Dr. Duane Garner and provides an overview of current techniques in cooled storage of semen from livestock animals such as camelids, goats, and sheep. Facing worldwide environmental changes and a trend towards more conscious and healthy eating behaviors, the development of a stable animal breeding industry is a significant challenge for the near future. In the present review, factors influencing semen handling in camelids, goats and sheep are described and relevant methods as well as current trends to improve liquid-storage of cooled semen are discussed, including extenders, additives, cooling rates, and storage temperatures. The species-specific physiology and resulting challenges are taken into consideration. While the main problem for camelid semen processing is the relatively greater viscosity as compared with that of some other animals, the deciding factor for successful artificial insemination (AI) in goats and sheep is the site (i.e., cervical or vaginal) of semen placement in the reproductive tract. Due to the type of cervical anatomy, the penetration of the cervix when using AI instruments is rather difficult. Furthermore, the seminal plasma of small ruminants affects the interaction with milk-based extenders and egg yolk which results in species-specific regimens for cooled liquid-preservation. Comparing all three species, the greatest pregnancy rates were obtained by AI with goat semen after cooled liquid-storage for several days.
Collapse
|
10
|
Susilowati S, Mustofa I, Wurlina W, Triana IN, Utama S, Rimayanti R. Effect of insulin-like growth factor-1 complex of Simmental bull seminal plasma on post-thawed Kacang buck semen fertility. Vet World 2021; 14:2073-2084. [PMID: 34566323 PMCID: PMC8448655 DOI: 10.14202/vetworld.2021.2073-2084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Aim Kacang buck sperm is cryosensitive due to the seminal plasma of semen itself. Meanwhile, bull seminal plasma contains the insulin-like growth factor-1 (IGF-1) complex, which is cryoprotective. The addition of the crude protein of Simmental bull seminal plasma increased the quality of post-thawed semen of Kacang buck. The study was conducted to determine the effects of Simmental bull seminal plasma with IGF-1 on the fertility of post-thawed Kacang buck semen. Materials and Methods Buck semen was diluted in the following skim milk-egg yolk extender preparations: Without the addition of Simmental bull seminal plasma IGF-1 complex protein (T0); with the addition of 12-μg Simmental bull seminal plasma IGF-1 complex protein (T1); and with the addition of 24-μg Simmental bull seminal plasma IGF-1 complex protein (T2). The extended semen was packed in 0.25-mL straws and frozen. Post-thawed semen fertility was evaluated based on the following variables: Sperm motility, viability, intact plasma membrane (IPM), malondialdehyde (MDA) levels, capacitation status, and acrosome reaction. The difference in each variable among the groups was evaluated using analysis of variance, followed by Tukey's honestly significant difference test, at a 95% level of significance. Meanwhile, principal component analysis (PCA) was used to identify the principal component of semen fertility among the seven parameters. Results The T1 group showed the highest sperm motility, viability, IPM, and percentage of incapacitated sperm and the lowest MDA levels, percentage of capacitated sperm, and acrosome reaction. PCA revealed that sperm motility had a moderate to very robust correlation with other variables and is the most crucial parameter, accounting for 80.79% of all variables. Conclusion The IGF-1 complex in Simmental bull seminal plasma was useful for increasing the fertility of post-thawed Kacang buck semen, and sperm motility was the principal component of semen fertility.
Collapse
Affiliation(s)
- Suherni Susilowati
- Laboratory of Veterinary Artificial Insemination, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Imam Mustofa
- Laboratory of Veterinary Obstetrics, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Wurlina Wurlina
- Laboratory of Veterinary Infertility and Sterility, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Indah Norma Triana
- Laboratory of Veterinary Infertility and Sterility, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Suzanita Utama
- Laboratory of Veterinary Obstetrics, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Laboratory of Veterinary Infertility and Sterility, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
11
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J, Li D. Protective Effects and Mechanisms of Procyanidins on Parkinson's Disease In Vivo and In Vitro. Molecules 2021; 26:5558. [PMID: 34577027 PMCID: PMC8464719 DOI: 10.3390/molecules26185558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
This research assessed the molecular mechanism of procyanidins (PCs) against neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induced Parkinson's disease (PD) models. In vitro, PC12 cells were incubated with PCs or deprenyl for 24 h, and then exposed to 1.5 mM MPP+ for 24 h. In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were incubated with deprenyl or PCs in 400 μM MPTP for 4 days. Compared with MPP+/MPTP alone, PCs significantly improved antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), and decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, PCs significantly increased nuclear Nrf2 accumulation in PC12 cells and raised the expression of NQO1, HO-1, GCLM, and GCLC in both PC12 cells and zebrafish compared to MPP+/MPTP alone. The current study shows that PCs have neuroprotective effects, activate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and alleviate oxidative damage in MPP+/MPTP-induced PD models.
Collapse
Affiliation(s)
- Juan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
| | - Yixuan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
| | - Yangfan Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
| | - Jiawen Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
| | - Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.)
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China;
| |
Collapse
|
12
|
Role of Antioxidants in Cooled Liquid Storage of Mammal Spermatozoa. Antioxidants (Basel) 2021; 10:antiox10071096. [PMID: 34356329 PMCID: PMC8301105 DOI: 10.3390/antiox10071096] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cooled preservation of semen is usually associated with artificial insemination and genetic improvement programs in livestock species. Several studies have reported an increase in reactive oxidative species and a decrease in antioxidant substances and sperm quality parameters during long-term semen storage at refrigerated temperatures. The supplementation of antioxidants in extenders before refrigeration could reduce this detrimental effect. Various antioxidants have been tested, both enzymatic, such as superoxide dismutase and catalase, and non-enzymatic, such as reduced glutathione, vitamins E and C and melatonin. However, the problem of oxidative stress in semen storage has not been fully resolved. The effects of antioxidants for semen-cooled storage have not been reviewed in depth. Therefore, the objective of the present study was to review the efficiency of the supplementation of antioxidants in the extender during cooled storage of semen in livestock species.
Collapse
|
13
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J, Li D. Neuroprotective Effects and Mechanisms of Procyanidins In Vitro and In Vivo. Molecules 2021; 26:molecules26102963. [PMID: 34067571 PMCID: PMC8155916 DOI: 10.3390/molecules26102963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 μg/mL) or N-Acetyl-L-cysteine (NAC) (20 μM) for 24 h, and then incubated with 200 μM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 μM) or PCs (4, 8 or 16 μg/mL) in the absence or presence of 300 μM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.
Collapse
Affiliation(s)
- Juan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Yixuan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Yangfan Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Jiawen Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
- Correspondence: ; Tel./Fax: +86–571-88982191
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| |
Collapse
|
14
|
Wu C, Dai J, Zhang S, Sun L, Liu Y, Zhang D. Effect of Thawing Rates and Antioxidants on Semen Cryopreservation in Hu Sheep. Biopreserv Biobank 2021; 19:204-209. [PMID: 33625896 DOI: 10.1089/bio.2020.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hu sheep is a valuable sheep breed in China, and semen cryopreservation of Hu sheep is important for sustainable development of the agri-food industry. This study aimed to evaluate the effect of thawing rate and antioxidants (procyanidins [PC] and mitoquinone [MitoQ]) on the quality and antioxidant enzyme activity of post-thaw sperm in Hu sheep. Our results showed that the highest sperm quality was obtained from the group thawed at 70°C for 5 seconds. Furthermore, addition of 150 nM MitoQ in the extender could enhance motility, integrity of the membrane and acrosome, and mitochondrial activity, whereas only sperm motility and membrane integrity were increased with 10 μg/mL of PC supplementation, compared with the control group. Meanwhile, both PC (10 μg/mL) and MitoQ (150 nM) supplementation increased the levels of superoxide dismutase and glutathione peroxidase and decreased the levels of reactive oxygen species and malondialdehyde. In conclusion, the optimal thawing protocol of semen cryopreservation in Hu sheep was 70°C for 5 seconds. MitoQ supplementation (150 mM) in the extender could improve sperm quality and reduce the level of oxidative stress in Hu sheep semen after cryopreservation. Further studies are needed to evaluate fertility of the post-thaw semen using MitoQ.
Collapse
Affiliation(s)
- Caifeng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Lingwei Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Ying Liu
- Department of Animal, Dairy, Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Defu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| |
Collapse
|
15
|
Hashem NM, Gonzalez-Bulnes A, Simal-Gandara J. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste? Antioxidants (Basel) 2020; 9:antiox9101023. [PMID: 33096704 PMCID: PMC7589028 DOI: 10.3390/antiox9101023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Reproduction is a complex process that is substantially affected by environmental cues, specifically feed/diet and its components. Farm animals as herbivorous animals are exposed to a large amount of polyphenols present in their natural feeding system, in alternative feed resources (shrubs, trees, and agro-industrial byproducts), and in polyphenol-enriched additives. Such exposure has increased because of the well-known antioxidant properties of polyphenols. However, to date, the argumentation around the impacts of polyphenols on reproductive events is debatable. Accordingly, the intensive inclusion of polyphenols in the diets of breeding animals and in media for assisted reproductive techniques needs further investigation, avoiding any source of reproductive waste and achieving maximum benefits. This review illustrates recent findings connecting dietary polyphenols consumption from different sources (conventional and unconventional feeds) with the reproductive performance of farm animals, underpinned by the findings of in vitro studies in this field. This update will help in formulating proper diets, optimizing the introduction of new plant species, and feed additives for improving reproductive function, avoiding possible reproductive wastes and maximizing possible benefits.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: ; Tel.: +20-3-5921960; Fax: +20-3-5922780
| | - Antonio Gonzalez-Bulnes
- Departamento de Reproducción Animal, INIA, Avda, Puerta de Hierro s/n., 28040 Madrid, Spain;
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
| |
Collapse
|
16
|
Yang J, Dong D, Peng G, Sun Q, Yang C, Gao Y, Ji H, Dong W. Melatonin regulates ATP content and fertilising capacity of Onychostoma macrolepis spermatozoa by inhibiting ROS accumulation during semen storage in vitro. Reprod Fertil Dev 2020; 32:1212-1222. [PMID: 33019961 DOI: 10.1071/rd20153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/05/2020] [Indexed: 12/27/2022] Open
Abstract
Melatonin (MLT) is an efficient antioxidant that protects spermatozoa against damages caused by oxidative stress. In this study, to maintain good function of Onychostoma macrolepis spermatozoa during semen preservation invitro at 4°C, different concentrations of MLT (0.5, 1 and 2μM) were added to the semen. After storage (0, 24, 48 and 72h), 1μM MLT in semen markedly improved sperm quality, as reflected by better plasma membrane integrity, the relative steady level of reactive oxygen species (ROS) and slower rate of decrease in mitochondrial membrane potential. Activated spermatozoa in semen with 1μM MLT had higher kinematic performance (i.e. percentage of motile and progressive spermatozoa and the beat cross frequency; P<0.05) and longer duration of sperm motility (P<0.05) compared with spermatozoa in semen withother MLT concentrations. Furthermore, 1μM MLT maintained higher ATP concentrations in spermatozoa during semen storage and significantly improved the fertilising capacity of spermatozoa after 72h semen storage compared with the other MLT concentrations. To expand wild resources of O. macrolepis, 1μM MLT can be used as a semen additive to maintain better sperm function and enhance sperm fertilising capacity in artificial insemination (AI).
Collapse
Affiliation(s)
- Jinmeng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Daqian Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenhao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; and Corresponding author.
| |
Collapse
|
17
|
Effect of Sperm Concentration and Storage Temperature on Goat Spermatozoa during Liquid Storage. BIOLOGY 2020; 9:biology9090300. [PMID: 32961716 PMCID: PMC7564667 DOI: 10.3390/biology9090300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The use of cooled semen is relatively common in goats. There are a number of advantages of cooled semen doses, including easier handling of artificial insemination (AI) doses, transport, more AI doses per ejaculate, and higher fertility rates in comparison with frozen AI doses. However, cooled semen has a short shelf life. The objective of this study was to examine the effect of temperature and sperm concentration on the in vitro sperm quality during liquid storage for 48 h, including sperm motility and kinetics, response to oxidation, mitochondrial membrane potential (MMP) and DNA fragmentation in goats. Three experiments were performed. In the first, the effects of liquid preservation of semen at different temperatures (5 °C or 17 °C), durations (0, 24 and 48 h) and sperm concentrations (250 × 106 sperm/mL (1:2 dilution rate), 166.7 × 106 sperm/mL (1:3 dilution rate) or 50 × 106 sperm/mL (1:10 dilution rate)) on sperm motility and kinetics were studied. In the second experiment, the effect of temperature, sperm washing and concentration on sperm motility and DNA fragmentation was studied. Finally, the effect of sperm concentration and duration of storage at 5 °C on sperm motility, response to oxidative stress and MMP was examined. We found that refrigerated liquid storage of goat sperm impaired sperm quality, such as motility, MMP and response to oxidation, as storage time increased; however, sperm DNA fragmentation index was not significantly affected. Liquid storage at 5 °C preserved higher total motility than at 17 °C. Moreover, we observed that the reduction of sperm concentration below 500 × 106 sperm/mL did not seem to improve the quality of spermatozoa conserved in milk-based extender in the conditions tested.
Collapse
|