1
|
Bezerra HFC, Santos EM, de Carvalho GGP, de Oliveira JS, da Silva FF, Cassuce MR, Guerra RR, Pereira DM, Ferreira DDJ, Nascimento TVC, Zanine ADM. Metabolic profile of goats fed diets containing crude glycerin from biodiesel production. Front Vet Sci 2023; 10:1236542. [PMID: 37727773 PMCID: PMC10505958 DOI: 10.3389/fvets.2023.1236542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
Feedlot finishing of goats is a growing practice, but the economic viability of this technology is compromised by the inclusion of ingredients such as corn and soybean. An alternative to minimize this barrier is the use of agroindustry coproducts as substitutes for those ingredients, such as crude glycerol. This study aimed to evaluated the metabolism of crossbred Boer finishing goats fed diets containing crude glycerin from biodiesel production. Thirty-two crossbred, castrated goat of age were distributed in a fully randomized experimental design with four treatments and eight replicates. The experiment lasted 69 days, and goats were fed sorghum silage and concentrate, with the inclusion of crude glycerin in the diet at levels of 0, 50, 100, and 150 g/kg on a dry matter basis. The diets did not have an effect (p > 0.05) on the serum urea levels. Increasing dietary crude glycerin levels did not the influence the metabolic or urinary profiles (p > 0.05). The liver tissue of the goats fed diets containing the highest crude glycerin inclusion levels showed deleterious effects. The inclusion of crude glycerin with approximately 6.6 g/kg methanol caused deleterious effects to the liver tissue of Boer crossbred goats as the glycerin concentrations increased. However, glycerin levels did not cause deleterious effects on the liver tissue or on the serum or urinary profiles. The use of crude glycerin with lower methanol content is recommended for goat diets.
Collapse
Affiliation(s)
| | - Edson Mauro Santos
- Department of Animal Science, Federal University of Paraiba, Areia, Paraíba, Brazil
| | | | | | | | - Meiry Rodrigues Cassuce
- Department of Animal Science, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ricardo Romão Guerra
- Department of Animal Science, Federal University of Paraiba, Areia, Paraíba, Brazil
| | - Danillo Marte Pereira
- Department of Animal Science, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | | | | | | |
Collapse
|
2
|
Javaheri Barfourooshi H, Sadeghipanah H, Asadzadeh N, Seyedabadi H, Borazjani M, Javanmard A. Changes in the gene expression profile of the mammary gland lipogenic enzymes in Saanen goats in response to dietary fats. Vet Med Sci 2023; 9:945-956. [PMID: 36595618 PMCID: PMC10029901 DOI: 10.1002/vms3.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The second half of the first pregnancy is a critical period in the growth and development of the mammary gland. The use of functional compounds during this period may positively impact livestock performance. OBJECTIVES In this study, changes in lipogenic enzyme gene expression in the mammary gland of Saanen goats in response to different dietary fat sources were analysed. METHODS Goats from four groups (10 each) received these diets from the last two months of pregnancy through four months of lactation: C-, no added fat (negative control group), C+, with saturated palm oil (positive control group), SB, with roasted soybeans (omega-6 group) and FS, with extruded flaxseed (omega-3 group). The fat content was about 4% of dry matter. Milk yield, milk fatty acid profile, milk health index (HI) and gene expression of four lipogenic enzymes in mammary tissue were measured. RESULTS The FS group had significantly higher milk production with lower omega-6 to omega-3, monounsaturated to polyunsaturated, and total saturated fatty acids compared to other groups. The shorter and longer than16-carbon chain of total milk fatty acid indicates significantly higher values for the C- and C+ groups, respectively. The milk HI for the SB group was significantly higher. The gene expression profile for acetyl-coenzyme A carboxylase was higher in the C- group than other experimental groups. CONCLUSIONS The results show that manipulation of the diet with unsaturated fat supplements improved milk production, synthesis of milk fat and molecular expression of lipogenic enzymes in mammary tissue in primiparous Saanen goats.
Collapse
Affiliation(s)
- Hoda Javaheri Barfourooshi
- Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Hassan Sadeghipanah
- Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Asadzadeh
- Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Hamidreza Seyedabadi
- Department of Biotechnology, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Marjan Borazjani
- Central Laboratory, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Suárez-Vega A, Gutiérrez-Gil B, Toral PG, Frutos P, Loor JJ, Arranz JJ, Hervás G. Elucidating genes and gene networks linked to individual susceptibility to milk fat depression in dairy goats. Front Vet Sci 2022; 9:1037764. [PMID: 36590804 PMCID: PMC9798324 DOI: 10.3389/fvets.2022.1037764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary supplementation with marine lipids modulates ruminant milk composition toward a healthier fatty acid profile for consumers, but it also causes milk fat depression (MFD). Because the dairy goat industry is mainly oriented toward cheese manufacturing, MFD can elicit economic losses. There is large individual variation in animal susceptibility with goats more (RESPO+) or less (RESPO-) responsive to diet-induced MFD. Thus, we used RNA-Seq to examine gene expression profiles in mammary cells to elucidate mechanisms underlying MFD in goats and individual variation in the extent of diet-induced MFD. Differentially expression analyses (DEA) and weighted gene co-expression network analysis (WGCNA) of RNA-Seq data were used to study milk somatic cell transcriptome changes in goats consuming a diet supplemented with marine lipids. There were 45 differentially expressed genes (DEGs) between control (no-MFD, before diet-induced MFD) and MFD, and 18 between RESPO+ and RESPO-. Biological processes and pathways such as "RNA transcription" and "Chromatin modifying enzymes" were downregulated in MFD compared with controls. Regarding susceptibility to diet-induced MFD, we identified the "Triglyceride Biosynthesis" pathway upregulated in RESPO- goats. The WGCNA approach identified 9 significant functional modules related to milk fat production and one module to the fat yield decrease in diet-induced MFD. The onset of MFD in dairy goats is influenced by the downregulation of SREBF1, other transcription factors and chromatin-modifying enzymes. A list of DEGs between RESPO+ and RESPO- goats (e.g., DBI and GPD1), and a co-related gene network linked to the decrease in milk fat (ABCD3, FABP3, and PLIN2) was uncovered. Results suggest that alterations in fatty acid transport may play an important role in determining individual variation. These candidate genes should be further investigated.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,*Correspondence: Juan-José Arranz
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| |
Collapse
|
5
|
Effect of Unsaturated Fatty Acid Ratio In Vitro on Rumen Fermentation, Methane Concentration, and Microbial Profile. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well known that dairy cows are fed diets with high fat content, which can adversely affect rumen fermentation. However, whether the effects of high fat content on rumen fermentation are related to the composition of fatty acids (FA) is for further study. We explored the effects of unsaturated fatty acid (UFA) ratios in vitro on rumen, methane concentration and microbial composition under the same fat levels. The experiment included a low-unsaturated group (LU, UFA proportion: 42.8%), a medium-unsaturated group (MU, UFA proportion: 56.9%), and a high-unsaturated group (HU, UFA proportion: 70.9%). The incubation fluid pH and NH3-N levels were not significantly different in the three groups. Total volatile fatty acid (TVFA), acetate, propionate, butyrate, and valerate in the MU group had a decreased trend compared to the LU group (0.05 < p < 0.1), and no difference was found in other volatile fatty acids (VFAs) among the three groups. Furthermore, gas production kinetic parameters among the three groups did not differ significantly. The LU group’s CH4 concentration was significantly higher than the HU group (p < 0.05). The CO2 concentration in the LU group was also significantly higher than the MU and LU groups (p < 0.05). Additionally, 16S rRNA microbial sequencing results showed that the Shannon diversity value significantly increased in the MU group (p < 0.05) compared to the LU group. Other alpha diversity indices (Chao 1, observed species, and ACE) did not differ among the three groups. The increased proportion of UFA significantly decreased the relative abundance of Succinivibrionaceae_UCG_001 and Fibrobacter (p < 0.05). Meanwhile, the multiple Lachnospiraceae bacteria significantly increased in the MU group (p < 0.05). Overall, our findings indicated that the microbial community in the incubation system could be affected by elevating proportions of UFA, affecting the yield of VFA, whereas the CH4 concentration was reduced.
Collapse
|
6
|
Cremonesi P, Capra E, Turri F, Lazzari B, Chessa S, Battelli G, Colombini S, Rapetti L, Castiglioni B. Effect of Diet Enriched With Hemp Seeds on Goat Milk Fatty Acids, Transcriptome, and miRNAs. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.909271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In dairy ruminants, a diet supplemented with feed rich in unsaturated fatty acids can be an effective medium to increase the health-promoting properties of milk, although their effect on the pathways/genes involved in these processes has not been properly and completely defined to date. To improve our knowledge of the cell’s activity in specific conditions, next-generation RNA-sequencing technology was used to allow whole transcriptome characterization under given conditions. In addition to this, microRNAs (miRNAs) have recently been known as post-transcriptional regulators in fatty acid and cholesterol metabolism by targeting lipid metabolism genes. In this study, to analyze the transcriptome and miRNAs in goat milk after a supplemental diet enriched with linoleic acid (hemp seeds), next-generation RNA-sequencing was used in order to point out the general biological mechanisms underlying the effects related to milk fat metabolism. Ten pluriparous Alpine goats were fed with the same pretreatment diet for 40 days; then, they were arranged to two dietary treatments consisting of control (C) and hemp seed (H)-supplemented diets. Milk samples were collected at 40 (time point = T0) and 140 days of lactation (time point = T1). Milk fatty acid (FA) profiles revealed a significant effect of hemp seeds that determined a strong increment in the preformed FA, causing a reduction in the concentration of de-novo FA. Monounsaturated and polyunsaturated n−3 FAs were increased by hemp treatment, determining a reduction in the n−6/n−3 ratio. After removing milk fats and proteins, RNA was extracted from the milk cells and transcriptomic analysis was conducted using Illumina RNA-sequencing. A total of 3,835 genes were highly differentially expressed (p-value < 0.05, fold change > 1.5, and FDR < 0.05) in the H group. Functional analyses evidenced changes in metabolism, immune, and inflammatory responses. Furthermore, modifications in feeding strategies affected also key transcription factors regulating the expression of several genes involved in milk fat metabolism, such as peroxisome proliferator-activated receptors (PPARs). Moreover, 38 (15 known and 23 novel) differentially expressed miRNAs were uncovered in the H group and their potential functions were also predicted. This study gives the possibility to improve our knowledge of the molecular changes occurring after a hemp seed supplementation in the goat diet and increase our understanding of the relationship between nutrient variation and phenotypic effects.
Collapse
|
7
|
Effects of High-Forage Diets Containing Raw Flaxseeds or Soybean on In Vitro Ruminal Fermentation, Gas Emission, and Microbial Profile. Microorganisms 2021; 9:microorganisms9112304. [PMID: 34835430 PMCID: PMC8621816 DOI: 10.3390/microorganisms9112304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Lipid metabolism plays an important role in the energy economy of ruminants. However, its interactions of fat, rumen fermentation, gas emission, and microorganisms are not yet clear. This study evaluated the effect of adding raw oilseeds to high-forage diets on in vitro ruminal fermentation, gas composition, and microbial profile. Three isoenergetic and isoproteic experimental diets were designed and used as fermentation substrate: control treatment (CON group) was the basal diet lacking oilseeds, the other two treatments were the basal diet supplemented by 100 g/kg dry matter (DM) raw whole soybean (S group) and 50 g/kg DM raw flaxseed (F group), respectively. Data showed that the acetate, butyrate, and total VFA concentration of culture fluids in the S group were lower (p < 0.05) than in the F group. There was a tendency to a higher level (p = 0.094) of propionate concentration in the F group compared with the other two groups. The gas production in the F group was higher (p < 0.05) than in the control group. There was a lower abundance of Sutterella (p < 0.05) and a greater abundance of Butyrivibrio (p < 0.05) in both of the two oilseed treatments. Methanobrevibacter (p = 0.078) in the F group was the lowest. Our results suggested that CH4 emission could be inhibited with flaxseed supplementation by propionate production metabolism, biohydrogenation of unsaturated fatty acid (FA), and toxicity to Methanobrevibacter, while regarding soybean seed supplementation, the emission of CH4 was more likely to be reduced through biohydrogenation of unsaturated FA modulated by Butyrivibrio.
Collapse
|
8
|
Abrahamsen F, Reddy G, Abebe W, Gurung N. Effect of Varying Levels of Hempseed Meal Supplementation on Humoral and Cell-Mediated Immune Responses of Goats. Animals (Basel) 2021; 11:ani11102764. [PMID: 34679786 PMCID: PMC8532981 DOI: 10.3390/ani11102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the effect of varying levels of hempseed meal supplementation on antibody and cell-mediated immune responses, as well as the expression of some of the important immunoregulatory cytokines. Treatments consisted of hempseed meal supplementation at 0 (control), 10, 20, and 30% of the total diet. Goats were randomly assigned to one of the four treatments n = 10. Cell-mediated immune response was evaluated on day 59 of the feeding period by measuring skinfold thickness at 24 h following intradermal injection of phytohemagglutinin. A significant increase in skinfold thickness was observed with increasing levels of supplementation as compared to that of the control group. Serum antibody titers to chicken ovalbumin were not significantly different between treatment groups. Cytokine concentrations of IL-6 increased linearly with increasing level of supplementation (p < 0.05), contrarily to the linear decrease that was observed for TNF-α (p < 0.05). Although IL-2 tended to increase with the 10 and 30% levels of supplementation (p < 0.07), the result was not significant, and no significant differences were obtained with respect to IL-4 concentrations. Cytokine gene expression values measured by RT-PCR, however, demonstrated some significant differences. HSM supplementation had no significant effect on the expression of IL-2 or IL-6. However, significant differences were observed with the 30% supplementation for IL-4 and TNF-α as compared to that of the control group (p < 0.05). IL-4 was down regulated for the 10 and 20% treatment groups but was upregulated for the 30% treatment group. TNF-α was downregulated in the 10% but upregulated for the 20 and 30% treatment groups. No significant differences were observed for the serum cortisol concentration or white blood cell counts. These results suggested that hempseed meal supplementation may improve cell-mediated immune response while having no effect on antibody-mediated immune response. However, more research needs to be conducted to determine the most efficacious inclusion rate.
Collapse
Affiliation(s)
- Frank Abrahamsen
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Gopal Reddy
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
- Correspondence: (G.R.); (N.G.)
| | - Woubit Abebe
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Nar Gurung
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
- Correspondence: (G.R.); (N.G.)
| |
Collapse
|
9
|
The effect of whole sesame seeds on milk chemical composition, fatty acid profile and antioxidant status in goats. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Vargas-Bello-Pérez E, Robles-Jimenez LE, Ayala-Hernández R, Romero-Bernal J, Pescador-Salas N, Castelán-Ortega OA, González-Ronquillo M. Effects of Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake, Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats. Animals (Basel) 2020; 10:ani10101728. [PMID: 32977669 PMCID: PMC7650822 DOI: 10.3390/ani10101728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
This study determined the effect of protected dietary oils on dry matter intake (DMI), digestibility and milk production in dairy goats. Nine Saanen goats were used in a 3 × 3 Latin square design with three periods of 25 days. A basal diet based on barley hay and corn silage was supplemented with 2.7% DM of calcium soaps of either palm (PO), canola (CO) or safflower (SO) oils. Data for dry matter intake, nutrient digestibility and milk production was analyzed using the general linear model (GLM) procedure of SAS. Gas production data was analyzed using the procedure of non-linear regression analysis (PROC NLIN) from SAS. Nutrient intakes were not affected by treatments. However, compared with CO, the digestibility of dry matter (653 vs. 552 and 588 g/kg), organic matter (663 vs. 559 and 606 g/kg) and neutral detergent fiber (616 vs. 460 and 510 g/kg) were lowered (p < 0.001) by SO and PO. Compared with CO, in vitro gas production increased (p < 0.001) in PO and SO (174 vs. 201 and 206 mL gas/g incubated DM). Compared with PO and CO, milk production increased (p < 0.001) with SO (0.88 and 0.95 vs. 1.10 kg/d, respectively). With regard to PO and SO, CO decreased fat (34 and 35 vs. 32 g/d) and protein (35 and 38 vs. 30 g/d) in milk. In conclusion, compared to the traditional use of calcium soaps manufactured from PO, protected SO resulted in increased milk yield without negative effects on digestibility and nutrient intake.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
- Correspondence: (E.V.-B.-P.); (M.G.-R.)
| | - Lizbeth Esmeralda Robles-Jimenez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100, CP 50000 Toluca, Mexico; (L.E.R.-J.); (R.A.-H.); (J.R.-B.); (N.P.-S.); (O.A.C.-O.)
| | - Rafael Ayala-Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100, CP 50000 Toluca, Mexico; (L.E.R.-J.); (R.A.-H.); (J.R.-B.); (N.P.-S.); (O.A.C.-O.)
| | - Jose Romero-Bernal
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100, CP 50000 Toluca, Mexico; (L.E.R.-J.); (R.A.-H.); (J.R.-B.); (N.P.-S.); (O.A.C.-O.)
| | - Nazario Pescador-Salas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100, CP 50000 Toluca, Mexico; (L.E.R.-J.); (R.A.-H.); (J.R.-B.); (N.P.-S.); (O.A.C.-O.)
| | - Octavio Alonso Castelán-Ortega
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100, CP 50000 Toluca, Mexico; (L.E.R.-J.); (R.A.-H.); (J.R.-B.); (N.P.-S.); (O.A.C.-O.)
| | - Manuel González-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100, CP 50000 Toluca, Mexico; (L.E.R.-J.); (R.A.-H.); (J.R.-B.); (N.P.-S.); (O.A.C.-O.)
- Correspondence: (E.V.-B.-P.); (M.G.-R.)
| |
Collapse
|
11
|
Al-Khalaifah H. Modulatory Effect of Dietary Polyunsaturated Fatty Acids on Immunity, Represented by Phagocytic Activity. Front Vet Sci 2020; 7:569939. [PMID: 33195556 PMCID: PMC7536543 DOI: 10.3389/fvets.2020.569939] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Lately, dietary polyunsaturated fatty acids (PUFAs) have shown substantial importance in human and animal nutrition, especially those of the n-3 group. Development and optimal functioning of the immune system are directed affected by diet. These dietary fatty acids have an important impact on the health and immune competence of various species including human beings. They are essential for the modulation of immune responses in health and disease. Fatty acid composition of immune cells can be modulated by the action of dietary fats and the outcomes in the composition can produce functional effects on reactivity and functioning of immune cells in a short period. There are several mechanisms involved in impacting dietary fatty acids on immune function; however, lipid mediator synthesis from PUFAs is of great importance in terms of inflammation. The objectives of this article are reviewing studies on the impact of PUFA in the diet on phagocytosis of chickens, murine, rats, ruminants, and humans. It also sheds light on the possible mechanism by which this immunomodulation occurs.
Collapse
Affiliation(s)
- Hanan Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| |
Collapse
|
12
|
Moreno-Indias I, Hernández-Castellano LE, Sánchez-Macías D, Morales-delaNuez A, Torres A, Argüello A, Castro N. Milk Replacer Supplementation with Docosahexaenoic Acid from Microalgae Does Not Affect Growth and Immune Status in Goat Kids. Animals (Basel) 2020; 10:ani10071233. [PMID: 32698513 PMCID: PMC7401510 DOI: 10.3390/ani10071233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The consumption of docosahexaenoic acid (DHA) has beneficial effects on human health. Meat from suckling goat kids is highly valuable, especially in Mediterranean countries. Based on this, several strategies have been implemented to increase the content of DHA in foodstuffs such as meat and meat products. Several studies have observed how feeding diverse sources of DHA can improve the fatty acid profile in goat kid meat. However, few studies have focused on the effect of using these DHA supplements on growth and the immune system development in these animals. Consequently, this study aimed to evaluate the effect of different levels of DHA supplementation on growth and the immune system development in newborn goat kids. The current study showed that the DHA supplementation did not affect either growth or the immune status of goat kids during the first 35 days of life. Abstract Consumption of polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA), has beneficial effects for consumers’ health. Consequently, there is an increased interest in enhancing meat fatty acid profiles (i.e., PUFA and DHA content) through diverse nutritional strategies. This study aimed to investigate the effect of supplementing a microalgae-derived product rich in DHA on growth and immune system development in newborn goat kids. In this experiment, newborn goat kids were fed milk replacer (MR) supplemented with three levels of a microalgae-derived product rich in DHA (DHA-Gold®, Martek Biosciences, MD, USA). Groups were designed as follows: MR-NS (milk replacer without DHA-Gold® supplementation; n = 10), MR-DHA-9 (9 g of DHA-Gold®/L milk replacer; n = 10) and MR-DHA-18 (18 g of DHA-Gold®/L milk replacer; n = 10). The immune status of the kids was evaluated by the plasma IgG and IgM concentrations, as well as by the complement system and chitotriosidase activities. Dietary supplementation with DHA did not affect either growth or innate and humoral immunity (p > 0.05). This study concludes that supplementation with DHA does not cause negative effects on growth and immune status in newborn goat kids.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Lorenzo E. Hernández-Castellano
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
- Correspondence:
| | - Davinia Sánchez-Macías
- Animal Production and Industrialization Unit, Department of Agroindustrial Engineering, Universidad Nacional de Chimborazo, 060150 Riobamba, Ecuador;
| | - Antonio Morales-delaNuez
- Agrobiotechnology Group, Instituto de Productos Naturales y Agrobiología (IPNA), Spanish Research Council (CSIC), 38206 La Laguna, Spain;
| | - Alexandr Torres
- Unit of Animal Production, Pasture, and Forage in Arid and Subtropical Areas. Canary Islands Institute for Agricultural Research, 38200 La Laguna, Spain;
| | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
| | - Noemí Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
| |
Collapse
|
13
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Dumont A, Devos Y, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified soybean MON 87705 × MON 87708 × MON 89788, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-126). EFSA J 2020; 18:e06111. [PMID: 37649527 PMCID: PMC10464710 DOI: 10.2903/j.efsa.2020.6111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soybean MON 87705 × MON 87708 × MON 89788 (three-event stack soybean) was produced by conventional crossing to combine three single soybean events: MON 87705, MON 87708 and MON 89788. This combination is intended to alter the fatty acid profile in the seed (in particular increasing the levels of oleic acid) and tolerance to glyphosate-based and dicamba herbicides. The Genetically Modified Organisms Panel previously assessed the three single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the three-event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable three-event stack soybean seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and the reporting intervals are in line with the intended uses of soybean MON 87705 × MON 87708 × MON 89788. Considering the altered fatty acid profile of the three-event stack soybean, a proposal for post-market monitoring needs to be provided by the applicant. The GMO Panel notes that in the context of this application EFSA-GMO-NL-2015-126 the applicant did not provide a 90-day study on MON 87705 soybean in line with the applicable legal requirements. Therefore, the GMO Panel is not in the position to finalise the risk assessment of soybean MON 87705 × MON 87708 × MON 89788 under the current regulatory frame.
Collapse
|