1
|
Mirzaei A, Hajimohammadi A, Nasrian A, Nikzad M, Rowshan‐Ghasrodashti A, Nazifi S, Naeini AT. Oxidative Stress Biomarkers and Metabolic Parameters in Healthy Holstein Dairy Cows and Cows With Left Displacement Abomasum During the Transitional Period. Vet Med Sci 2025; 11:e70142. [PMID: 39611386 PMCID: PMC11605477 DOI: 10.1002/vms3.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/23/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND During the transitional period, dairy cows experience oxidative stress and are more susceptible to diseases, including left displacement of the abomasum (LDA). OBJECTIVES This study aimed to compare oxidative stress biomarker levels in cows with LDA to those in healthy conditions and investigate the associations between predictive metabolites linked to LDA and oxidative stress biomarkers. METHODS In this case-control study, 400 healthy multiparous Holstein cows were matched for lactation number, milk production and calving date. Blood samples were collected at four time points: 21 and 7 days before, as well as 7 and 21 days after parturition from all animals. During the observation period, seven cows diagnosed with LDA in the main population, and seven healthy cows were randomly selected as controls for the comparison of oxidative stress, liver enzymes and metabolic parameters. Analysis of blood parameters utilized repeated measures ANOVA, and the degree of relationship between oxidative stress biomarkers and other measured parameters was assessed using Pearson correlations. RESULTS The LDA group exhibited significantly higher levels of urea, blood urea nitrogen (BUN), gamma-glutamyl transferase, glucose, cholesterol, triglyceride (TAG), β-hydroxybutyric acid (BHBA), aspartate aminotransferase (AST), sorbitol dehydrogenase, serum amyloid A (SAA), chloride, sodium, potassium, total antioxidant capacity (TAC) and malondialdehyde (MDA) compared to the control cows (p < 0.05). Positive correlations were observed among BUN, glucose, TB, AST, SAA, BHBA, TAG and MDA. Conversely, these parameters displayed negative correlations with TAC. Negative correlations were found among chloride, sodium, potassium, calcium, phosphorus and MDA, whereas positive correlations were observed with TAC. CONCLUSIONS These findings highlight the elevated level of oxidative stress and compromised antioxidant defence in cows with LDA and the intricate interplay among oxidative stress, metabolic parameters and liver enzymes.
Collapse
Affiliation(s)
- Ahmadreza Mirzaei
- Post‐Doctoral Fellow at College of Veterinary MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Ali Hajimohammadi
- Associate Professor of Large Animal Internal MedicineDepartment of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Amirhossein Nasrian
- Graduated Student of Veterinary MedicineDepartment of Clinical StudiesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammad Nikzad
- Resident of Large Animal Internal MedicineDepartment of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Abbas Rowshan‐Ghasrodashti
- Assistant Professor of Large Animal Internal MedicineDepartment of Clinical StudiesSchool of Veterinary MedicineIslamic Azad UniversityKazerun BranchFarsIran
| | - Saeed Nazifi
- Professor of Clinical PathologyDepartment of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Aboutorab Tabatabaei Naeini
- Professor of Veterinary Surgery and RadiologyDepartment of Veterinary Surgery and RadiologySchool of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
2
|
Milk Yield, Hematological and Electrolyte Parameters in Primiparous Dairy Cows After Laparotomic Omentopexy and One-Step Laparoscopic Abomasopexy Treatments of Left Displaced Abomasum. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
This study aimed to evaluate the effects of two different treatment options for the correction of left displaced abomasum (LDA) on milk yield, hematological, electrolyte parameters, lactate and cortisol concentrations in primiparous cows. Twenty four Holstein cows were randomly assigned into three groups: cows treated with one-step laparoscopic abomasopexy (LPS, n=8), cows treated by left paralumbar omentopexy (LPT, n=8) and healthy cows (CON, n=8), matched by parity and days in milk. Blood samples were collected before (D0) and after (D0’) surgery, and 1 (D1), 3 (D3), 10 (D3) and 30 (D30) days following surgery. LPS and LPT cows at D0 as well as LPT cows at 30 d following surgery had lower milk yield than CON cows (P<0.05), while the service period was higher in LPT than in CON (P<0.05). WBC was lower at D0 as well as Hb and Ht at D0 and D0’ in CON group than those of LPS and LPT (P<0.05). Hyponatremia, hypochloremia and hypokalemia at D0 and D0’ were observed in LPS and LPT. In addition, LPT cows had lower Na and Cl at D1 and D3 and lower K at D1 than CON (P<0.05). Impaired hydration in LPS and LPT cows was accompanied by higher concentrations of lactate at D0, D0’, D1 and D3 (P<0.01) and cortisol at D0 and D0’ (P<0.01) compared with CON group, while LPT had higher cortisol at D0’ than LPS (P<0.05). These results indicated that LPS has the potential to improve the convalescence period of LDA in primiparous cows.
Collapse
|
3
|
Dong W, Chen Y, Zhang Q, Zhao X, Liu P, He H, Lu T, He Y, Du X, Hu J, Zhao X, Zhang Y. Effects of lipoteichoic and arachidonic acids on the immune-regulatory mechanism of bovine mammary epithelial cells using multi-omics analysis. Front Vet Sci 2022; 9:984607. [PMID: 36090174 PMCID: PMC9450935 DOI: 10.3389/fvets.2022.984607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows. It mainly utilizes the properties of its pathogenic factor, lipoteichoic acid (LTA), to elicit a host-cell inflammatory response and evade the host-cell immune response. Arachidonic acid (AA) has a regulatory role in the inflammatory response, cell metabolism, and apoptosis. The study aimed to establish a cell model by determining the optimal concentration of LTA and AA for cell induction using the Cell Counting Kit−8 assay and the quantitative polymerase chain reaction of interleukin (IL)-1β, IL-2, and IL-6. MAC-T cells were planted in 36 10-cm2 culture dishes at a density of 1 × 107 cells per dish. They were treated with LTA for 24 h to constitute the LTA group and with AA for 12 h to constitute the AA group. The cells were pretreated with LTA for 24 h followed by treatment with AA for 12 h to constitute the LTA + AA group. Using proteomic, transcriptomic, and metabolomic analyses, this study determined that LTA can regulate the expression of Actin Related protein 2/3 complex (ARPC)3, ARPC4, Charged Multivesicular Body Protein 3, protein kinase cGMP-dependent, NF-κB Inhibitor Alpha,and other genes to affect cellular metabolism, immune regulation and promote apoptosis. In contrast, AA was observed to regulate the expression of genes such as ARPC3, ARPC4, Charged Multivesicular Body Protein 3, Laminin Gamma 1, Insulin Receptor, Filamin B, and Casein Kinase 1 Epsilon to inhibit cellular apoptosis and promote immune regulation, which provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Quanwei Zhang
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxuan Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Peiwen Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Haijian He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Ting Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Xianghong Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
- *Correspondence: Yong Zhang
| |
Collapse
|
4
|
Comparison of metabolic, oxidative and inflammatory status of Simmental × Holstein crossbred with parental breeds during the peripartal and early lactation periods. J DAIRY RES 2021; 88:253-260. [PMID: 34405789 DOI: 10.1017/s0022029921000650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the research reported in this paper was to evaluate plasma concentrations of energy, oxidative and inflammatory biomarkers of Simmental (sire) × Holstein (dam) crossbred cows, in comparison with the two parental breeds during the peripartal and early lactation periods and to estimate the effects of heterosis for these traits. Thirty-three animals, managed under the same conditions, 8 Simmental (SI), 9 Holstein (HO) and 16 crossbred (CR) cows were enrolled in this study. Glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatine kinase (CK), total protein, albumin, creatinine and urea were determined in blood sampled at six different time points (30 ± 3 and 15 ± 3 d before the expected calving date, at calving and 15, 30 and 60 d after calving). Furthermore, derived reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), interleukin-6 (IL-6), haptoglobin (Hp) and serum amyloid A protein (SAA) were determined to evaluate inflammatory and oxidative status. Results showed that the CR group had significantly lower average values of glucose and NEFA when compared to HO group; signifcantly lower values of urea than SI group and significantly higher values of creatinine than HO. Furthermore, CR cows showed the lowest average value of d-ROMs with respect to SI and HO parental breeds. Finally, the average value of haptoglobin was significantly lower in CR and HO groups, when compared to SI group. As for the heterosis we found the highest (positive) percentage for CK (98%) and BAP (47%) and the lowest (negative) percentage for OSi (-75%) and d-ROMs (-39%). A negative percentage was also found for the glucose (-11%) and NEFA (-20%) toward the Simmental parental breed. Our results suggest a different response among the three genetic groups during the peripartal and early lactation periods. In particular, CR and SI cows seem more adaptable regarding energy metabolism and oxidative status. Heterosis led to a positive effect on those parameters in Simmental (sire) × Holstein (dam) crossbred cows F1 population (50% Simmental and 50% Holstein).
Collapse
|
5
|
Yong K, Luo ZZ, Luo Q, Yang QW, Huang YX, Zhao XX, Zhang Y, Cao SZ. Plasma metabolome alteration in dairy cows with left displaced abomasum before and after surgical correction. J Dairy Sci 2021; 104:8177-8187. [PMID: 33865591 DOI: 10.3168/jds.2020-19761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Left displaced abomasum (LDA) leads to substantial changes in the metabolism of dairy cows. Surgical correction of LDA can rapidly improve the health of cows; however, changes in metabolism following surgery are rarely described. To investigate the changes of plasma metabolome in cows with LDA before and after surgical correction, blood samples were collected from 10 healthy postpartum cows and 10 cows with LDA on the day of diagnosis, then again from the LDA cows 14 d after surgery. Serum nonesterified fatty acid, β-hydroxybutyric acid, cortisol and histamine concentration, and antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities were evaluated, and the metabolic profile in plasma was analyzed using ultra-high-performance liquid chromatography time-of-flight mass spectrometry. The results demonstrated that cows with LDA experienced severe negative energy balance and oxidative stress, which can be improved by surgical correction. The metabolic profile was analyzed using multidimensional and univariate statistical analyses, and different metabolites were identified. In total, 102 metabolites differed between cows with LDA and healthy cows. After surgical correction, 65 metabolites changed in cows with LDA, compared with these cows during the LDA event. Following surgical correction, AA levels tended to increase, and lipid levels tended to decrease in cows with LDA. Pathway analysis indicated marked changes in linoleic acid metabolism, Arg biosynthesis, and Gly, Ser, and Thr metabolism in cows at the onset of LDA and following surgical correction. Surgical treatment reversed the changes in AA and lipid metabolism in cows with LDA.
Collapse
Affiliation(s)
- K Yong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China
| | - Z Z Luo
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Q Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Q W Yang
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China
| | - Y X Huang
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - X X Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - S Z Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Suzuki N, Yuliza Purba F, Hayashi Y, Nii T, Yoshimura Y, Isobe N. Seasonal variations in the concentration of antimicrobial components in milk of dairy cows. Anim Sci J 2020; 91:e13427. [PMID: 32696553 DOI: 10.1111/asj.13427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
The incidence of bovine mastitis and the bulk milk somatic cell count (BMSCC) are influenced by season, which may be associated with innate immune functions, including antimicrobial components in mammary glands. Therefore, the present study was conducted to examine the effect of season on antimicrobial components in milk. Rectal temperature and plasma cortisol, thyroxine, and derivatives of reactive oxygen metabolites (d-ROMs) were measured as stress parameters. Concentrations of lactoferrin (LF), lingual antimicrobial peptide (LAP), psoriasin (S100A7), and Immunoglobulin A (IgA) in milk were measured as indicators of innate immune function. LF and LAP concentrations were significantly lower in summer than in winter and spring, respectively, whereas the concentration of S100A7 was significantly lower in winter than in spring and autumn. The rectal temperature was significantly higher in summer than in other seasons, whereas plasma cortisol, thyroxine, and d-ROMs did not exhibit any seasonal variation. In conclusion, even though stress parameters were not changed, the concentration of antimicrobial components, such as LF and LAP, decreased in summer, which may explain the frequent occurrence of mastitis during this season.
Collapse
Affiliation(s)
- Naoki Suzuki
- Hiroshima Agricultural Mutual Aid Association, Higashi-Hiroshima, Japan.,Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Fika Yuliza Purba
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
7
|
Shono S, Gin A, Minowa F, Okubo K, Mochizuki M. The Oxidative Stress Markers of Horses-the Comparison with Other Animals and the Influence of Exercise and Disease. Animals (Basel) 2020; 10:ani10040617. [PMID: 32260122 PMCID: PMC7222798 DOI: 10.3390/ani10040617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Diacron-reactive oxygen metabolite (d-ROM) and biological antioxidant potential (BAP) levels in the serum of horses were measured (ponies, n = 15; thoroughbred, n = 31; other full-sized horses, n = 7). The mean d-ROM levels in horses were significantly higher (p < 0.001) than those in dairy cattle (n = 25) and dogs (n = 31). However, d-ROM levels in horses were lower than the standard levels reported in humans. When d-ROM and BAP levels were plotted graphically, the points for horses with a disease (ringbone in 1 Japanese sports horse, cellulitis in 1 thoroughbred, melanoma in 1 Lipizzaner) fell outside the group of points for other (non-diseased) horses. A similar separation was seen (using data from other authors) for a horse with Rhodococcus equi, a horse following castration surgery, and a mare following delivery. These results, comparing horses, other animals, and humans, are interesting from the standpoint of comparative medicine, and they contribute to the sparse literature available on d-ROM and BAP levels in animals. Because the level of d-ROM and BAP levels were changed depending on the situation of health, those indexes are promising as indices of health in horses.
Collapse
Affiliation(s)
- Saori Shono
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (S.S.); (A.G.)
| | - Azusa Gin
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (S.S.); (A.G.)
| | | | - Kimihiro Okubo
- Department of Otolaryngology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Mariko Mochizuki
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (S.S.); (A.G.)
- Correspondence: ; Tel.: +81-422-31-4151
| |
Collapse
|