1
|
Yu JZ, Zhou J, Yang FX, Hao JP, Hou ZC, Zhu F. Genome-Wide Association Analysis Identifies Important Haplotypes and Candidate Gene XKR4 for Body Size Traits in Pekin Ducks. Animals (Basel) 2024; 14:2349. [PMID: 39199882 PMCID: PMC11350698 DOI: 10.3390/ani14162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Body size is an important growth indicator in ducks and is a primary selection criterion for physical improvement. An excessively rapid growth rate in meat ducks can result in excessive body size, which may hinder subsequent processing and slaughter operations. However, only a few molecular markers related to body size have been studied in meat ducks. In this study, we performed a genome-wide association study (GWAS) to identify candidate genes and QTLs affecting body length (BL), keel bone length (KBL), neck length (NL), and breast width (BrW) in Pekin ducks (Anas platyrhynchos domestica). Our results indicate the significant SNP for NL is located within a pseudogene, whereas the significant SNP for BrW is located in an intergenic region. More importantly, our analysis identified a haplotype that was significantly associated with both BL and KBL. This haplotype, containing 48 single-nucleotide polymorphisms (SNPs), is localized within the XKR4 gene. The identification of this haplotype suggests that XKR4 may be a key candidate gene influencing BL and KBL in Pekin ducks. These findings have important implications for the breeding and genetic improvement of Pekin ducks, and provide valuable insights into the genetic architecture of body size traits in this species.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Jun Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Fang-Xi Yang
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China; (F.-X.Y.); (J.-P.H.)
| | - Jin-Ping Hao
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China; (F.-X.Y.); (J.-P.H.)
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| |
Collapse
|
2
|
Zhang S, Fang X, Wu R, Nie Q, Li Z. VNN1 Gene Expression and Polymorphisms Associated with Chicken Carcass Traits. Animals (Basel) 2024; 14:1888. [PMID: 38998000 PMCID: PMC11240768 DOI: 10.3390/ani14131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to investigate the association between hepatic VNN1 expression and carcass traits in Mahuang chickens as well as to identify polymorphisms in the upstream and downstream regions of VNN1 that could potentially be associated with these carcass traits. The study revealed that VNN1 expression levels in liver correlated with various carcass traits such as dressed weight, eviscerated weight, and abdominal fat weight. A total of 39 polymorphic sites were identified, among which 23 were found to be associated with 15 different carcass traits. These polymorphic sites were organized into three distinct haplotype blocks, with BLOCK2 and BLOCK3 being associated with various eviscerated weight percentages, thigh weight, breast muscle weight, wing weight, and other traits. The study underscores the significant role of VNN1 in influencing the carcass traits of Mahuang chickens and sheds light on the genetic foundations of these traits. The findings provide valuable insights that could inform breeding strategies aimed at optimizing traits relevant to market demands and slaughtering efficiency.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Ruiquan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (Q.N.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Alkhammas AH, Al-Thuwaini TM, Al-Shuhaib MBS, Khazaal NM. Association of Novel C319T Variant of PITX2 Gene 3'UTR Region With Reproductive Performance in Awassi Sheep. Bioinform Biol Insights 2023; 17:11779322231179018. [PMID: 37313032 PMCID: PMC10259137 DOI: 10.1177/11779322231179018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Several genes influence sheep's reproductive performance, among them the paired-like homeodomain transcription factor 2 (PITX2) gene. Thus, this study aimed to examine whether the variability within the PITX2 gene is associated with the reproductive performance of Awassi ewes. A total of 123 single-progeny ewes and 109 twin ewes were used to extract genomic DNA. An amplicon of 4 sequence fragments from exons 2, 4, 5 (upstream portion), and 5 (downstream portion) of the PITX2 gene was generated by polymerase chain reaction (PCR), 228, 304, 381, and 382 bp, respectively. Three genotypes of 382 bp amplicons were identified: CC, CT, and TT. Sequence analysis revealed a novel mutation in the CT genotype 319C > T. Statistical analysis revealed that single-nucleotide polymorphism (SNP) 319C > T was associated with reproductive performance. Single-nucleotide polymorphism 319C > T-carrying ewes had significantly (P ⩽ .01) lower litter sizes, twinning rates, lambing rates, and more days to lambing than those carrying CT and CC genotypes. Based on a logistic regression analysis, it was confirmed that the 319C > T SNP decreased litter size. Ewes with TT genotype produced fewer lambs than ewes with CT and CC genotypes. According to these results, the variant 319C> T SNP negatively affects the reproductive performance of Awassi sheep. Ewes carrying the 319C > T SNP have a lower litter size and are less prolific than those without the SNP.
Collapse
Affiliation(s)
- Ahmed H Alkhammas
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Neam M Khazaal
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
4
|
Shao M, Shi K, Zhao Q, Duan Y, Shen Y, Tian J, He K, Li D, Yu M, Lu Y, Tang Y, Feng C. Transcriptome Analysis Reveals the Differentially Expressed Genes Associated with Growth in Guangxi Partridge Chickens. Genes (Basel) 2022; 13:genes13050798. [PMID: 35627183 PMCID: PMC9140345 DOI: 10.3390/genes13050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Guangxi Partridge chicken is a well-known chicken breed in southern China with good meat quality, which has been bred as a meat breed to satisfy the increased demand of consumers. Compared with line D whose body weight is maintained at the average of the unselected group, the growth rate and weight of the selected chicken group (line S) increased significantly after breeding for four generations. Herein, transcriptome analysis was performed to identify pivotal genes and signal pathways of selective breeding that contributed to potential mechanisms of growth and development under artificial selection pressure. The average body weight of line S chickens was 1.724 kg at 90 d of age, which showed a significant increase at 90 d of age than line D chickens (1.509 kg), although only the internal organ ratios of lung and kidney changed after standardizing by body weight. The myofiber area and myofiber density of thigh muscles were affected by selection to a greater extent than that of breast muscle. We identified 51, 210, 31, 388, and 100 differentially expressed genes (DEGs) in the hypothalamus, pituitary, breast muscle, thigh muscle, and liver between the two lines, respectively. Several key genes were identified in the hypothalamus-pituitary-muscle axis, such as FST, THSB, PTPRJ, CD36, PITX1, PITX2, AMPD1, PRKAB1, PRKAB2, and related genes for muscle development, which were attached to the cytokine–cytokine receptor interaction signaling pathway, the PPAR signaling pathway, and lipid metabolism. However, signaling molecular pathways and the cell community showed that elevated activity in the liver of line S fowl was mainly involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules, and signal transduction. Collectively, muscle development, lipid metabolism, and several signaling pathways played crucial roles in the improving growth performance of Guangxi Partridge chickens under artificial selection for growth rate. These results support further study of the adaptation of birds under selective pressure.
Collapse
Affiliation(s)
- Minghui Shao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Kai Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Qian Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Ying Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Jinjie Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Kun He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Dongfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Minli Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Yanfei Tang
- Guangxi Fufeng Agricultural and Animal Husbandry Group Co., Ltd., Nanning 530024, China;
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.S.); (K.S.); (Q.Z.); (Y.D.); (Y.S.); (J.T.); (K.H.); (D.L.); (M.Y.)
- Correspondence:
| |
Collapse
|
5
|
Chronological Expression of PITX2 and SIX1 Genes and the Association between Their Polymorphisms and Chicken Meat Quality Traits. Animals (Basel) 2021; 11:ani11020445. [PMID: 33567786 PMCID: PMC7916052 DOI: 10.3390/ani11020445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Meat quality is closely related to the development of skeletal muscle, in which PITX2 and SIX1 genes play important regulatory roles. The present study firstly provided the data of chronological expression files of PITX2 and SIX1 genes in the post-hatching pectoral muscle and analyzed the association of their polymorphisms with the meat quality traits of Wuliang Mountain Black-bone (WLMB) chickens. The results showed that both PITX2 and SIX1 genes were weakly expressed in the second and third weeks, and then increased significantly from the third week to the fourth week. Furthermore, there was a significant positive correlation between the expression levels of the two genes. Twelve and one SNPs were detected in the chicken PITX2 and SIX1 genes, respectively, of which four SNPs (g.9830C > T, g.10073C > T, g.13335G > A, g.13726A > G) of the PITX2 gene and one SNP (g.564G > A) of the SIX1 gene were significantly associated with chicken meat quality traits. For the PITX2 gene, chickens with the CT genotype of g.9830C > T showed the highest meat color L*, shear force (SF), pH, and the lowest electrical conductivity (EC), and drip loss (DL) (p < 0.05 or p < 0.01); chickens with the CC genotype of g.10073C > T had the lowest L*, pH, and the highest DL (p < 0.01). For the SIX1 gene, chickens with the GG genotype of g.564G > A had the highest (p < 0.05) SF and pH. Furthermore, pH had a significant correlation with all the other meat quality traits. The current study could contribute to the research of regulatory mechanisms of meat quality and lay the foundation for improving meat quality based on marker-assisted selection in chickens.
Collapse
|
6
|
Cao H, Wen Y, Xu X, Liu K, Liu H, Tan Y, Zhou W, Mao H, Dong X, Xu N, Yin Z. Investigation of the CEBPA gene expression pattern and association analysis of its polymorphisms with meat quality traits in chickens. Anim Biotechnol 2020; 33:448-456. [PMID: 32776801 DOI: 10.1080/10495398.2020.1803343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Meat quality is closely related to the fat deposition which is regulated by a cascade of transcription factors. As a transcription factor, the CCAAT/enhancer binding protein alpha (CEBPA) is considered as one of the key molecules regulating adipogenesis. Therefore, the objective of this study was to detect the expression pattern of the CEBPA gene and evaluate whether its single nucleotide polymorphisms (SNPs) were associated with the meat quality traits in Wuliang Mountain Black-bone (WLMB) chickens. The results showed that the chicken CEBPA mRNA was widely expressed in the 11 tissues, and the expression pattern of it might be tissue- and time-specific different. The locus of g.74C > G was not significantly associated with chicken meat quality. For the locus of g.552G > A, chickens with the GG genotype showed higher pH (p < 0.01), lower drip loss (p < 0.01) and higher intramuscular fat (p < 0.05) than those with other genotypes. It suggested that polymorphisms of the CEBPA gene were significantly associated with the meat quality traits of WLMB chickens. The results of this study contribute to the functional research of the CEBPA gene and lay the foundation for improving meat quality based on the marker-assisted selection in chickens.
Collapse
Affiliation(s)
- Haiyue Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaya Wen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - XiuLi Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Honghua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuge Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiguang Mao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyang Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ningying Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaozheng Yin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|