1
|
Ruvinskiy D, Amaral A, Weldenegodguad M, Ammosov I, Honkatukia M, Lindeberg H, Peippo J, Popov R, Soppela P, Stammler F, Uimari P, Ginja C, Kantanen J, Pokharel K. Adipose gene expression profiles in Northern Finncattle, Mirandesa cattle, Yakutian cattle and commercial Holstein cattle. Sci Rep 2024; 14:22216. [PMID: 39333243 PMCID: PMC11436755 DOI: 10.1038/s41598-024-73023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The drastic change in global climate has led to in-depth studies of the geneticresources of native cattle adapted to challenging environments. Native cattle breeds may harbor unique genetic mechanisms that have enabled them adapt to their given environmental conditions. Adipose tissues are key factors in the regulation of metabolism and energy balance and are crucial for the molecular switches needed to adapt to rapid environmental and nutritional changes. The transcriptome landscape of four adipose tissues was used in this study to investigate the differential gene expression profiles in three local breeds, Yakutian cattle (Sakha Republic), Northern Finncattle (Finland), Mirandesa cattle (Portugal) and commercial Holstein cattle. A total of 26 animals (12 cows, 14 bulls) yielded 81 samples of perirenal adipose tissue (n = 26), metacarpal adipose tissue (n = 26), tailhead adipose tissue (n = 26) and prescapular adipose tissue (n = 3). More than 17,000 genes were expressed in our dataset. Principal component analysis of the normalized expression profiles revealed a differential expression profile of the metacarpal adipose tissue. We found that the genes upregulated in the metacarpal adipose tissue of Yakutian cattle, such as NR4A3, TEKT3, and FGGY, were associated with energy metabolism and response to cold temperatures. In Mirandesa cattle, the upregulated genes in perirenal adipose tissue were related to immune response and inflammation (AVPR2, CCN1, and IL6), while in Northern Finncattle, the upregulated genes appeared to be involved in various physiological processes, including energy metabolism (IGFBP2). According to the sex-based comparisons, the most interesting result was the upregulation of the TPRG1 gene in three tissues of Yakutian cattle females, suggesting that adaptation is related to feed efficiency. The highest number of differentially expressed genes was found between Yakutian cattle and Holstein, several of which were associated with immunity in Yakutian cattle, indicating potential differences in disease resistance and immunity between the two breeds. This study highlights the vast difference in gene expression profiles in adipose tissues among breeds from different climatic environments, most likely highlighting selective pressure and the potential significance of the uniquely important regulatory functions of metacarpal adipose tissue.
Collapse
Affiliation(s)
- Daniil Ruvinskiy
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600, Jokioinen, Finland
| | - Andreia Amaral
- Escola de Ciência e Tecnologia, Universidade de Évora, Largo dos Colegiais, No 2, 7004-516, Évora, Portugal
- Centro Interdisciplinar em Investigação em Sanidade Animal, Faculdade de Medicina Veterinária de Lisboa, 1300-477, Lisboa, Portugal
| | - Melak Weldenegodguad
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Innokentyi Ammosov
- Yakut Scientific Research Institute of Agriculture, 67001, Yakutsk, The Sakha Republic (Yakutia), Russia
| | | | - Heli Lindeberg
- Natural Resources Institute Finland (Luke), Halolantie 31A, 71750, Maaninka, Finland
| | - Jaana Peippo
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600, Jokioinen, Finland
- NordGen-Nordic Genetic Resources Centre, Ås, Norway
| | - Ruslan Popov
- Yakut Scientific Research Institute of Agriculture, 67001, Yakutsk, The Sakha Republic (Yakutia), Russia
| | - Päivi Soppela
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | | | - Pekka Uimari
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 28, 00014, Helsinki, Finland
| | - Catarina Ginja
- Centro Interdisciplinar em Investigação em Sanidade Animal, Faculdade de Medicina Veterinária de Lisboa, 1300-477, Lisboa, Portugal
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS - Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600, Jokioinen, Finland
| | - Kisun Pokharel
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600, Jokioinen, Finland.
| |
Collapse
|
2
|
Ashja A, Zorc M, Dovc P. Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia. Animals (Basel) 2024; 14:2713. [PMID: 39335302 PMCID: PMC11429251 DOI: 10.3390/ani14182713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Mastitis is a serious challenge for the dairy industry, leading to economic losses and affecting milk quality. The aim of this study is to identify genetic factors associated with mastitis resistance by conducting a genome-wide association study (GWAS) for the somatic cell score (SCS). Phenotypic records of 350 Holstein Friesian cows were obtained from the Slovenian Cattle Recording Scheme Database and consisted of around 1500 lactation data from 2012 to 2023 collected on a single farm in Slovenia. Corresponding genotypic data were also retrieved from the same database and genotyped using the Illumina BovineSNP50 BeadChip (Illumina, Inc., San Diego, CA, USA). For the association study, three SCS parameters were considered, including lactation mean somatic cell score (LM_SCS), maximum SCS value (SCSMAX), and top three mean value of SCS (TOP3). After performing a GWAS using FarmCPU and BLINK models, five significant SNPs associated with the TOP3 trait were found on BTA 14, 15, 22, and 29. The identified SNP markers were closely linked to six known candidate genes (DNASE1L3, SLC36A4, ARMC1, PDE7A, MMP13, CD44). These results indicate potential genetic markers associated with SCS in the Slovenian Holstein Friesian population.
Collapse
Affiliation(s)
| | | | - Peter Dovc
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.A.); (M.Z.)
| |
Collapse
|
3
|
Alipanah M, Roudbari Z, Momen M, Esmailizadeh A. Impact of inclusion non-additive effects on genome-wide association and variance's components in Scottish black sheep. Anim Biotechnol 2023; 34:3765-3773. [PMID: 37343283 DOI: 10.1080/10495398.2023.2224845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
CONTEXT It's well-documented that most economic traits have a complex genetic structure that is controlled by additive and non-additive gene actions. Hence, knowledge of the underlying genetic architecture of such complex traits could aid in understanding how these traits respond to the selection in breeding and mating programs. Computing and having estimates of the non-additive effect for economic traits in sheep using genome-wide information can be important because; non-additive genes play an important role in the prediction accuracy of genomic breeding values and the genetic response to the selection. AIM This study aimed to assess the impact of non-additive effects (dominance and epistasis) on the estimation of genetic parameters for body weight traits in sheep. METHODS This study used phenotypic and genotypic belonging to 752 Scottish Blackface lambs. Three live weight traits considered in this study were included in body weight at 16, 20, and 24 weeks). Three genetic models including additive (AM), additive + dominance (ADM), and additive + dominance + epistasis (ADEM), were used. KEY RESULTS The narrow sense heritability for weight at 16 weeks of age (BW16) were 0.39, 0.35, and 0.23, for 20 weeks of age (BW20) were 0.55, 0.54, and 0.42, and finally for 24 weeks of age (BW24) were 0.16, 0.12, and 0.02, using the AM, ADM, and ADEM models, respectively. The additive genetic model significantly outperformed the non-additive genetic model (p < 0.01). The dominance variance of the BW16, BW20, and BW24 accounted for 38, 6, and 30% of the total phenotypic, respectively. Moreover, the epistatic variance accounted for 39, 0.39, and 47% of the total phenotypic variances of these traits, respectively. In addition, our results indicated that the most important SNPs for live weight traits are on chromosomes 3 (three SNPS including s12606.1, OAR3_221188082.1, and OAR3_4106875.1), 8 (OAR8_16468019.1, OAR8_18067475.1, and OAR8_18043643.1), and 19 (OAR19_18010247.1), according to the genome-wide association analysis using additive and non-additive genetic model. CONCLUSIONS The results emphasized that the non-additive genetic effects play an important role in controlling body weight variation at the age of 16-24 weeks in Scottish Blackface lambs. IMPLICATIONS It is expected that using a high-density SNP panel and the joint modeling of both additive and non-additive effects can lead to better estimation and prediction of genetic parameters.
Collapse
Affiliation(s)
- Masoud Alipanah
- Department of Plant Production, University of Torbat Heydarieh, Torbat-e Heydarieh, Iran
| | - Zahra Roudbari
- Department of Animal Science, University of Jiroft, Jiroft, Iran
| | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ali Esmailizadeh
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Schneider H, Heise J, Tetens J, Thaller G, Wellmann R, Bennewitz J. Genomic dominance variance analysis of health and milk production traits in German Holstein cattle. J Anim Breed Genet 2023. [PMID: 36872841 DOI: 10.1111/jbg.12765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2023] [Indexed: 03/07/2023]
Abstract
Genomic analyses commonly explore the additive genetic variance of traits. The non-additive variance, however, is usually small but often significant in dairy cattle. This study aimed at dissecting the genetic variance of eight health traits that recently entered the total merit index in Germany and the somatic cell score (SCS), as well as four milk production traits by analysing additive and dominance variance components. The heritabilities were low for all health traits (between 0.033 for mastitis and 0.099 for SCS), and moderate for the milk production traits (between 0.261 for milk energy yield and 0.351 for milk yield). For all traits, the contribution of dominance variance to the phenotypic variance was low, varying between 0.018 for ovarian cysts and 0.078 for milk yield. Inbreeding depression, inferred from the SNP-based observed homozygosity, was significant only for the milk production traits. The contribution of dominance variance to the genetic variance was larger for the health traits, ranging from 0.233 for ovarian cysts to 0.551 for mastitis, encouraging further studies that aim at discovering QTLs based on their additive and dominance effects.
Collapse
Affiliation(s)
- Helen Schneider
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), Verden, Germany
| | - Jens Tetens
- Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Rodriguez Neira JD, Peripolli E, de Negreiros MPM, Espigolan R, López-Correa R, Aguilar I, Lobo RB, Baldi F. Prediction ability for growth and maternal traits using SNP arrays based on different marker densities in Nellore cattle using the ssGBLUP. J Appl Genet 2022; 63:389-400. [PMID: 35133621 DOI: 10.1007/s13353-022-00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the prediction ability for growth and maternal traits using different low-density customized SNP arrays selected by informativeness and distribution of markers across the genome employing single-step genomic BLUP (ssGBLUP). Phenotypic records for adjusted weight at 210 and 450 days of age were utilized. A total of 945 animals were genotyped with high-density chip, and 267 individuals born after 2008 were selected as validation population. We evaluated 11 scenarios using five customized density arrays (40 k, 20 k, 10 k, 5 k and 2 k) and the HD array was used as desirable scenario. The GEBV predictions and BIF (Beef Improvement Federation) accuracy were obtained with BLUPF90 family programs. Linear regression was used to evaluate the prediction ability, inflation, and bias of GEBV of each customized array. An overestimation of partial GEBVs in contrast with complete GEBVs and increase of BIF accuracy with the density arrays diminished were observed. For all traits, the prediction ability was higher as the array density increased and it was similar with customized arrays higher than 10 k SNPs. Level of inflation was lower as the density array increased of and was higher for MW210 effect. The bias was susceptible to overestimation of GEBVs when the density customized arrays decreased. These results revealed that the BIF accuracy is sensible to overestimation using low-density customized arrays while the prediction ability with least 10,000 informative SNPs obtained from the Illumina BovineHD BeadChip shows accurate and less biased predictions. Low-density customized arrays under ssGBLUP method could be feasible and cost-effective in genomic selection.
Collapse
Affiliation(s)
- Juan Diego Rodriguez Neira
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, 14884-900, Brazil.
| | - Elisa Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, 14884-900, Brazil
| | - Maria Paula Marinho de Negreiros
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (Usp), Pirassununga, 13535-900, Brazil
| | - Rafael Espigolan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (Usp), Pirassununga, 13535-900, Brazil
| | - Rodrigo López-Correa
- Departamento de Genética y Mejoramiento Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Ignacio Aguilar
- Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay
| | - Raysildo B Lobo
- Associação Nacional de Criadores e Pesquisadores (ANCP), Ribeirão Preto, Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, 14884-900, Brazil
| |
Collapse
|
6
|
Mancin E, Tuliozi B, Pegolo S, Sartori C, Mantovani R. Genome Wide Association Study of Beef Traits in Local Alpine Breed Reveals the Diversity of the Pathways Involved and the Role of Time Stratification. Front Genet 2022; 12:746665. [PMID: 35058966 PMCID: PMC8764395 DOI: 10.3389/fgene.2021.746665] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the genetic architecture of key growth and beef traits in livestock species has greatly improved worldwide thanks to genome-wide association studies (GWAS), which allow to link target phenotypes to Single Nucleotide Polymorphisms (SNPs) across the genome. Local dual-purpose breeds have rarely been the focus of such studies; recently, however, their value as a possible alternative to intensively farmed breeds has become clear, especially for their greater adaptability to environmental change and potential for survival in less productive areas. We performed single-step GWAS and post-GWAS analysis for body weight (BW), average daily gain (ADG), carcass fleshiness (CF) and dressing percentage (DP) in 1,690 individuals of local alpine cattle breed, Rendena. This breed is typical of alpine pastures, with a marked dual-purpose attitude and good genetic diversity. Moreover, we considered two of the target phenotypes (BW and ADG) at different times in the individuals' life, a potentially important aspect in the study of the traits' genetic architecture. We identified 8 significant and 47 suggestively associated SNPs, located in 14 autosomal chromosomes (BTA). Among the strongest signals, 3 significant and 16 suggestive SNPs were associated with ADG and were located on BTA10 (50-60 Mb), while the hotspot associated with CF and DP was on BTA18 (55-62 MB). Among the significant SNPs some were mapped within genes, such as SLC12A1, CGNL1, PRTG (ADG), LOC513941 (CF), NLRP2 (CF and DP), CDC155 (DP). Pathway analysis showed great diversity in the biological pathways linked to the different traits; several were associated with neurogenesis and synaptic transmission, but actin-related and transmembrane transport pathways were also represented. Time-stratification highlighted how the genetic architectures of the same traits were markedly different between different ages. The results from our GWAS of beef traits in Rendena led to the detection of a variety of genes both well-known and novel. We argue that our results show that expanding genomic research to local breeds can reveal hitherto undetected genetic architectures in livestock worldwide. This could greatly help efforts to map genomic complexity of the traits of interest and to make appropriate breeding decisions.
Collapse
|
7
|
Ma J, Gao X, Li J, Gao H, Wang Z, Zhang L, Xu L, Gao H, Li H, Wang Y, Zhu B, Cai W, Wang C, Chen Y. Assessing the Genetic Background and Selection Signatures of Huaxi Cattle Using High-Density SNP Array. Animals (Basel) 2021; 11:ani11123469. [PMID: 34944246 PMCID: PMC8698132 DOI: 10.3390/ani11123469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Huaxi cattle, a specialized beef cattle breed in China, has the characteristics of fast growth, high slaughter rate, and net meat rate, good reproductive performance, strong stress resistance, and wide adaptability. In this study, we evaluated the genetic diversity, population structure, and genetic relationships of Huaxi cattle and its ancestor populations at the genome-wide level, as well as detecting the selection signatures of Huaxi cattle. Principal component analysis (PCA) and phylogenetic analysis revealed that Huaxi cattle were obviously separated from other cattle populations. The admixture analysis showed that Huaxi cattle has distinct genetic structures among all populations at K = 4. It can be concluded that Huaxi cattle has formed its own unique genetic features. Using integrated haplotype score (iHS) and composite likelihood ratio (CLR) methods, we identified 143 and 199 potentially selected genes in Huaxi cattle, respectively, among which nine selected genes (KCNK1, PDLIM5, CPXM2, CAPN14, MIR2285D, MYOF, PKDCC, FOXN3, and EHD3) related to ion binding, muscle growth and differentiation, and immunity were detected by both methods. Our study sheds light on the unique genetic feature and phylogenetic relationship of Huaxi cattle, provides a basis for the genetic mechanism analysis of important economic traits, and guides further intensive breeding improvement of Huaxi cattle.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Han Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Hongwei Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Congyong Wang
- Beijing Lianyu Beef Cattle Breeding Technology Limited Company, Beijing 100193, China;
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
- Correspondence:
| |
Collapse
|
8
|
Genome-Wide Association Study Using Whole-Genome Sequence Data for Fertility, Health Indicator, and Endoparasite Infection Traits in German Black Pied Cattle. Genes (Basel) 2021; 12:genes12081163. [PMID: 34440337 PMCID: PMC8391191 DOI: 10.3390/genes12081163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
This genome-wide association study (GWAS) aimed to identify sequence variants (SVs) and candidate genes associated with fertility and health in endangered German Black Pied cattle (DSN) based on whole-genome sequence (WGS) data. We used 304 sequenced DSN cattle for the imputation of 1797 genotyped DSN to WGS. The final dataset included 11,413,456 SVs of 1886 cows. Cow traits were calving-to-first service interval (CTFS), non-return after 56 days (NR56), somatic cell score (SCS), fat-to-protein ratio (FPR), and three pre-corrected endoparasite infection traits. We identified 40 SVs above the genome-wide significance and suggestive threshold associated with CTFS and NR56, and three important potential candidate genes (ARHGAP21, MARCH11, and ZNF462). For SCS, most associations were observed on BTA 25. The GWAS revealed 61 SVs, a cluster of 10 candidate genes on BTA 13, and 7 pathways for FPR, including key mediators involved in milk fat synthesis. The strongest associations for gastrointestinal nematode and Dictyocaulus viviparus infections were detected on BTA 8 and 24, respectively. For Fasciola hepatica infections, the strongest associated SVs were located on BTA 4 and 7. We detected 200 genes for endoparasite infection traits, related to 16 pathways involved in host immune response during infection.
Collapse
|
9
|
Onogi A, Watanabe T, Ogino A, Kurogi K, Togashi K. Genomic prediction with non-additive effects in beef cattle: stability of variance component and genetic effect estimates against population size. BMC Genomics 2021; 22:512. [PMID: 34233617 PMCID: PMC8262069 DOI: 10.1186/s12864-021-07792-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic prediction is now an essential technology for genetic improvement in animal and plant breeding. Whereas emphasis has been placed on predicting the breeding values, the prediction of non-additive genetic effects has also been of interest. In this study, we assessed the potential of genomic prediction using non-additive effects for phenotypic prediction in Japanese Black, a beef cattle breed. In addition, we examined the stability of variance component and genetic effect estimates against population size by subsampling with different sample sizes. RESULTS Records of six carcass traits, namely, carcass weight, rib eye area, rib thickness, subcutaneous fat thickness, yield rate and beef marbling score, for 9850 animals were used for analyses. As the non-additive genetic effects, dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance effects were considered. The covariance structures of these genetic effects were defined using genome-wide SNPs. Using single-trait animal models with different combinations of genetic effects, it was found that 12.6-19.5 % of phenotypic variance were occupied by the additive-by-additive variance, whereas little dominance variance was observed. In cross-validation, adding the additive-by-additive effects had little influence on predictive accuracy and bias. Subsampling analyses showed that estimation of the additive-by-additive effects was highly variable when phenotypes were not available. On the other hand, the estimates of the additive-by-additive variance components were less affected by reduction of the population size. CONCLUSIONS The six carcass traits of Japanese Black cattle showed moderate or relatively high levels of additive-by-additive variance components, although incorporating the additive-by-additive effects did not improve the predictive accuracy. Subsampling analysis suggested that estimation of the additive-by-additive effects was highly reliant on the phenotypic values of the animals to be estimated, as supported by low off-diagonal values of the relationship matrix. On the other hand, estimates of the additive-by-additive variance components were relatively stable against reduction of the population size compared with the estimates of the corresponding genetic effects.
Collapse
Affiliation(s)
- Akio Onogi
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5, Yokotani, Seta, Oe-cho, Shiga, 520-2194, Otsu, Japan.
| | - Toshio Watanabe
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc, 371-0121, Maebashi, Japan
| | - Atsushi Ogino
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc, 371-0121, Maebashi, Japan
| | - Kazuhito Kurogi
- Cattle Breeding Department, Livestock Improvement Association of Japan, Inc, 135-0041, Tokyo, Japan
| | - Kenji Togashi
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc, 371-0121, Maebashi, Japan
| |
Collapse
|
10
|
Functional Analysis of Haplotypes in Bovine PSAP Gene and Their Relationship with Beef Cattle Production Traits. Animals (Basel) 2020; 11:ani11010049. [PMID: 33383762 PMCID: PMC7824473 DOI: 10.3390/ani11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/19/2022] Open
Abstract
Simple Summary With the rapid development of information technology and molecular biotechnology, animal molecular breeding technology is playing an increasingly important role in beef cattle breeding. Prosaposin (PSAP) is involved in regulating the growth and development of animals, and it is reported that PSAP is an important marker-assisted selection (MAS) in cattle herd. The purpose of this study was to explore the novel variants in 3’ UTR of cattle PSAP and evaluate their effects on the morphological traits of four Chinese cattle breeds. In this study, 13 variants were identified in the PSAP 3’ UTR from 501 individuals belonging to four cattle breeds. In Nanyang cattle, the distribution of haplotypes was different from the other three breeds. Two groups of haplotypes had association with morphological traits by changing the secondary structures of PSAP 3’ UTR rather than the miR-184 target sites. This study not only expands the genetic variation spectrum of cattle PSAP but also contributes to MAS genetics and breeding of Chinese cattle breeds. Abstract The purpose of this study was to explore functional variants in the prosaposin (PSAP) three prime untranslated region (3’ UTR) and clarify the relationship between the variants and morphological traits. Through Sanger sequencing, 13 variations were identified in bovine PSAP in four Chinese cattle breeds, with six of them being loci in 3’ UTR. In particular, Nanyang (NY) cattle had a special genotype and haplotype distribution compared to the other three breeds. NY cattle with ACATG and GCGTG haplotypes had higher morphological traits than GTACA and GTACG haplotypes. The results of dual-luciferase reporter assay showed that ACATG and GCGTG haplotypes affected the morphological traits of NY cattle by altering the secondary structure of PSAP 3’ UTR rather than the miR-184 target sites. The findings of this study could be an evidence of a complex and varying mechanism between variants and animal morphological traits and could be used to complement candidate genes for molecular breeding.
Collapse
|
11
|
Raza SHA, Khan S, Amjadi M, Abdelnour SA, Ohran H, Alanazi KM, Abd El-Hack ME, Taha AE, Khan R, Gong C, Schreurs NM, Zhao C, Wei D, Zan L. Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch Biochem Biophys 2020; 694:108543. [PMID: 32798459 DOI: 10.1016/j.abb.2020.108543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022]
Abstract
Genomic selection has an essential role in the livestock economy by increasing selection productivity. Genomics provides a mechanism to increase the rate of genetic gain using marker-assisted selection. Various quantitative trait loci (QTL) associated with body, carcass and meat quality traits in beef cattle have been found. It is widely accepted that QTL traits in livestock species are regulated by several genes and factors from the environment. Genome-wide association studies (GWAS) are a powerful approach in identifying QTL and to establish genomic regions harboring the genes and polymorphisms associated with specific characteristics in beef cattle. Due to their impact on economic returns, growth, carcass and meat quality traits of cattle are frequently used as essential criteria in selection in breeding programs., GWAS has been used in beef cattle breeding and genetic program and some progress has been made. Furthermore, numerous genes and markers related to productivity traits in beef cattle have been found. This review summarizes the advances in the use of GWAS in beef cattle production and outlines the associations with growth, carcass, and meat quality.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Samiullah Khan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Motahareh Amjadi
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hussien Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmajaod Bosne 90, 71000, Sarajevo, Bosnia and Herzegovina
| | - Khalid M Alanazi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Cheng Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|