1
|
Okada Y, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-Mouse CD39 Monoclonal Antibody Using PA Scanning and RIEDL Scanning. Monoclon Antib Immunodiagn Immunother 2024; 43:44-52. [PMID: 38507671 DOI: 10.1089/mab.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
A cell-surface ectonucleotidase CD39 mediates the conversion of extracellular adenosine triphosphate into immunosuppressive adenosine with another ectonucleotidase CD73. The elevated adenosine in the tumor microenvironment attenuates antitumor immunity, which promotes tumor cell immunologic escape and progression. Anti-CD39 monoclonal antibodies (mAbs), which suppress the enzymatic activity, can be applied to antitumor therapy. Therefore, an understanding of the relationship between the inhibitory activity and epitope of mAbs is important. We previously established an anti-mouse CD39 (anti-mCD39) mAb, C39Mab-1 using the Cell-Based Immunization and Screening method. In this study, we determined the critical epitope of C39Mab-1 using flow cytometry. We performed the PA tag (12 amino acids [aa])-substituted analysis (named PA scanning) and RIEDL tag (5 aa)-substituted analysis (named RIEDL scanning) to determine the critical epitope of C39Mab-1 using flow cytometry. By the combination of PA scanning and RIEDL scanning, we identified the conformational epitope, spanning three segments of 275-279, 282-291, and 306-323 aa of mCD39. These analyses would contribute to the identification of the conformational epitope of membrane proteins.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Ouchida T, Isoda Y, Nakamura T, Yanaka M, Tanaka T, Handa S, Kaneko MK, Suzuki H, Kato Y. Establishment of a Novel Anti-Mouse CCR1 Monoclonal Antibody C 1Mab-6. Monoclon Antib Immunodiagn Immunother 2024; 43:67-74. [PMID: 38512465 DOI: 10.1089/mab.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Okada Y, Suzuki H, Kaneko MK, Kato Y. Development of a Sensitive Anti-Mouse CD39 Monoclonal Antibody (C 39Mab-1) for Flow Cytometry and Western Blot Analyses. Monoclon Antib Immunodiagn Immunother 2024; 43:24-31. [PMID: 38197855 DOI: 10.1089/mab.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
CD39 is involved in adenosine metabolism by converting extracellular ATP to adenosine. As extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is one of the important strategies for tumor therapy. This study developed specific and sensitive mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening method. The established anti-mCD39 mAb, C39Mab-1 (rat IgG2a, kappa), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant of C39Mab-1 for CHO/mCD39 was 7.3 × 10-9 M. Furthermore, C39Mab-1 detected the lysate of CHO/mCD39 by western blot analysis. These results indicated that C39Mab-1 is useful for the detection of mCD39 in many functional studies.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| |
Collapse
|
4
|
Suzuki H, Tanaka T, Kudo Y, Tawara M, Hirayama A, Kaneko MK, Kato Y. A Rat Anti-Mouse CD39 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:203-208. [PMID: 38126892 DOI: 10.1089/mab.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
By converting extracellular adenosine triphosphate to adenosine, CD39 is involved in adenosine metabolism. The extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment. Therefore, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is thought to be one of the important strategies for tumor therapy. In this study, we developed novel mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening (CBIS) method. One of the established anti-mCD39 mAbs, C39Mab-2 (rat IgG2a, lambda), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) and an endogenously mCD39-expressed cell line (SN36) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant (KD) values of C39Mab-2 for CHO/mCD39 and SN36 were 5.5 × 10-9 M and 4.9 × 10-9 M, respectively. These results indicated that C39Mab-2 is useful for the detection of mCD39 in flow cytometry.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuma Kudo
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuki Tawara
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aoi Hirayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Mirzaei R, Shafiee S, Vafaei R, Salehi M, Jalili N, Nazerian Z, Muhammadnajad A, Yadegari F, Reza Esmailinejad M, Farahmand L. Production of novel recombinant anti-EpCAM antibody as targeted therapy for breast cancer. Int Immunopharmacol 2023; 122:110656. [PMID: 37473710 DOI: 10.1016/j.intimp.2023.110656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The utilization of monoclonal antibodies (moAbs), an issue correlated with the biopharmaceutical professions, is developing and maturing. Coordinated with this conception, we produced the appealingly modeled anti-EpCAM scFv for breast cancer tumors. METHODS Afterward cloning and expression of recombinant antibody in Escherichia coli bacteria, the correctness of the desired antibody was checked by western blotting. Flow cytometry was utilized to determine the capacity of the recombinant antibody to append to the desired receptors in the malignant breast cancer (BC)cell line. The recombinant antibody (anti-EpCAM scFv) was examined for preclinical efficacy in reducing tumor growth, angiogenesis, and invasiveness (in vitro- in vivo). FINDINGS A target antibody-mediated attenuation of migration and invasion in the examined cancer cell lines was substantiated (P-value < 0.05). Grafted tumors from breast cancer in mice indicated significant and compelling suppression of tumor growth and decrement in blood supply in reaction to the recombinant anti-EpCAM intervention. Evaluations of immunohistochemical and histopathological findings revealed an enhanced response rate to the treatment. CONCLUSION The desired anti-EpCAM scFv can be a therapeutic tool to reduce invasion and proliferation in malignant breast cancer.
Collapse
Affiliation(s)
- Roya Mirzaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Soodabeh Shafiee
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rana Vafaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Nazerian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ahad Muhammadnajad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohamad Reza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Li G, Suzuki H, Tanaka T, Asano T, Yoshikawa T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-EpCAM Monoclonal Antibody (EpMab-37) Using the Alanine Scanning Method. Monoclon Antib Immunodiagn Immunother 2023; 42:41-47. [PMID: 36853838 DOI: 10.1089/mab.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, and plays critical roles in cell adhesion, proliferation, and tumorigenesis. EpCAM has been considered as a promising target for tumor diagnosis and therapy. Anti-EpCAM monoclonal antibodies (mAbs) have been developed for EpCAM-overexpressed tumors, and several clinical trials have demonstrated promising outcomes. We previously established an anti-EpCAM mAb, EpMab-37 (mouse IgG1, kappa), using the Cell-Based Immunization and Screening method. EpMab-37 was revealed to recognize the conformational epitope of EpCAM. In this study, we determined the critical epitope of EpMab-37 by flow cytometry using the 1 × alanine scanning (1 × Ala-scan) and the 2 × alanine scanning (2 × Ala-scan) method. We first performed flow cytometry by 1 × Ala-scan using one alanine (or glycine)-substituted EpCAM mutants, which were expressed on Chinese hamster ovary-K1 cells, and found that the EpMab-37 did not recognize the R163A mutant of EpCAM. We next performed flow cytometry by 2 × Ala-scan using two alanine (or glycine) residues-substituted EpCAM mutants, and confirmed that EpMab-37 did not recognize R163A-including mutants of EpCAM. The results indicated that the critical binding epitope of EpMab-37 includes Arg163 of EpCAM.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Li G, Suzuki H, Ohishi T, Asano T, Tanaka T, Yanaka M, Nakamura T, yoshikawa T, Kawada M, Kaneko MK, Kato Y. Antitumor activities of a defucosylated anti‑EpCAM monoclonal antibody in colorectal carcinoma xenograft models. Int J Mol Med 2023; 51:18. [PMID: 36660940 PMCID: PMC9869728 DOI: 10.3892/ijmm.2023.5221] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, which is highly expressed on tumor cells. As EpCAM plays a crucial role in cell adhesion, survival, proliferation, stemness, and tumorigenesis, it has been considered as a promising target for tumor diagnosis and therapy. Anti‑EpCAM monoclonal antibodies (mAbs) have been developed and have previously demonstrated promising outcomes in several clinical trials. An anti‑EpCAM mAb, EpMab‑37 (mouse IgG1, kappa) was previously developed by the authors, using the cell‑based immunization and screening method. In the present study, a defucosylated version of anti‑EpCAM mAb (EpMab‑37‑mG2a‑f) was generated to evaluate the antitumor activity against EpCAM‑positive cells. EpMab‑37‑mG2a‑f recognized EpCAM‑overexpressing CHO‑K1 (CHO/EpCAM) cells with a moderate binding‑affinity [dissociation constant (KD)=2.2x10‑8 M] using flow cytometry. EpMab‑37‑mG2a‑f exhibited potent antibody‑dependent cellular cytotoxicity (ADCC) and complement‑dependent cytotoxicity (CDC) for CHO/EpCAM cells by murine splenocytes and complements, respectively. Furthermore, the administration of EpMab‑37‑mG2a‑f significantly suppressed CHO/EpCAM xenograft tumor development compared with the control mouse IgG. EpMab‑37‑mG2a‑f also exhibited a moderate binding‑affinity (KD=1.5x10‑8 M) and high ADCC and CDC activities for a colorectal cancer cell line (Caco‑2 cells). The administration of EpMab‑37‑mG2a‑f to Caco‑2 tumor‑bearing mice significantly suppressed tumor development compared with the control. By contrast, EpMab‑37‑mG2a‑f never suppressed the xenograft tumor growth of Caco‑2 cells in which EpCAM was knocked out. On the whole, these results indicate that EpMab‑37‑mG2a‑f may exert antitumor activities against EpCAM‑positive cancers and may thus be a promising therapeutic regimen for colorectal cancer.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan,Correspondence to: Dr Hiroyuki Suzuki or Dr Yukinari Kato, Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan, E-mail: , E-mail:
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takeo yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan,Correspondence to: Dr Hiroyuki Suzuki or Dr Yukinari Kato, Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan, E-mail: , E-mail:
| |
Collapse
|
8
|
Tanaka T, Suzuki H, Isoda Y, Asano T, Nakamura T, Yanaka M, Handa S, Takahashi N, Okuno S, Yoshikawa T, Li G, Nanamiya R, Goto N, Tateyama N, Okada Y, Kobayashi H, Kaneko MK, Kato Y. Development of a Sensitive Anti-Human CCR9 Monoclonal Antibody (C 9Mab-11) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:303-310. [PMID: 36383113 DOI: 10.1089/mab.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The C-C chemokine receptor 9 (CCR9) belongs to the G-protein-coupled receptor superfamily, and is highly expressed on the T cells and intestinal cells. CCR9 regulates various immune responses by binding to the C-C chemokine ligand, CCL25, and is involved in inflammatory diseases and tumors. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR9 is necessary for treatment and diagnosis. In this study, we established a specific anti-human CCR9 (hCCR9) mAb; C9Mab-11 (mouse IgG2a, kappa), using the synthetic peptide immunization method. C9Mab-11 reacted with hCCR9-overexpressed Chinese hamster ovary-K1 (CHO/hCCR9) and hCCR9-endogenously expressed MOLT-4 (human T-lymphoblastic leukemia) cells in flow cytometry. The dissociation constant (KD) of C9Mab-11 for CHO/hCCR9 and MOLT-4 cells were determined to be 1.2 × 10-9 M and 4.9 × 10-10 M, respectively, indicating that C9Mab-11 possesses a high affinity for both exogenously and endogenously hCCR9-expressing cells. Furthermore, C9Mab-11 clearly detected hCCR9 protein in CHO/hCCR9 cells using western blot analysis. In summary, C9Mab-11 can be a useful tool for analyzing hCCR9-related biological responses.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nozomi Takahashi
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Okuno
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Okada
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Plasmonic Biosensing for Label-Free Detection of Two Hallmarks of Cancer Cells: Cell-Matrix Interaction and Cell Division. BIOSENSORS 2022; 12:bios12090674. [PMID: 36140059 PMCID: PMC9496138 DOI: 10.3390/bios12090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Two key features of cancer cells are sustained proliferation and invasion, which is preceded by a modification of the adhesion properties to the extracellular matrix. Currently, fluorescence-based techniques are mainly used to detect these processes, including flow cytometry and fluorescence resonance energy transfer (FRET) microscopy. We have previously described a simple, fast and label-free method based on a gold nanohole array biosensor to detect the spectral response of single cells, which is highly dependent on the actin cortex. Here we used this biosensor to study two cellular processes where configuration of the actin cortex plays an essential role: cell cycle and cell–matrix adhesion. Colorectal cancer cells were maintained in culture under different conditions to obtain cells stopped either in G0/G1 (resting cells/cells at the initial steps of cell growth) or G2 (cells undergoing division) phases of the cell cycle. Data from the nanohole array biosensor showed an ability to discriminate between both cell populations. Additionally, cancer cells were monitored with the biosensor during the first 60 min after cells were deposited onto a biosensor coated with fibronectin, an extracellular matrix protein. Spectral changes were detected in the first 20 min and increased over time as the cell–biosensor contact surface increased. Our data show that the nanohole array biosensor provides a label-free and real-time procedure to detect cells undergoing division or changes in cell–matrix interaction in both clinical and research settings.
Collapse
|
10
|
Ward K, Kitchen MO, Mathias SJ, Khanim FL, Bryan RT. Novel intravesical therapeutics in the treatment of non-muscle invasive bladder cancer: Horizon scanning. Front Surg 2022; 9:912438. [PMID: 35959122 PMCID: PMC9360612 DOI: 10.3389/fsurg.2022.912438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Non-muscle-invasive bladder cancer (NMIBC) is a common and heterogeneous disease; many patients develop recurrent or progress to muscle-invasive disease. Intravesical drug therapy is a pillar in the current management of NMIBC; notwithstanding, Mitomycin C (MMC) and Bacillus Calmette-Guérin (BCG) have numerous limitations including international supply issues, and local and systemic toxicity. Here we review novel intravesical therapeutic options and drug delivery devices with potential for clinical use in the treatment of NMIBC. Methods PubMed, ClinicalTrials.gov and Cochrane Library searches were undertaken. Systematic reviews, meta-analyses, randomised controlled trials, single-arm clinical trials and national/international conference proceedings were included. Results Novel intravesical drugs, including chemotherapeutic agents, immune checkpoint inhibitors, monoclonal antibodies and gene therapies, have demonstrated varying efficacy in the treatment of NMIBC. Current evidence for the majority of treatments is mostly limited to single-arm trials in patients with recurrent NMIBC. Various novel methods of drug delivery have also been investigated, with encouraging preliminary results supporting the intravesical delivery of hyperthermic MMC and MMC hydrogel formulations. Conclusions Novel therapeutic agents and drug delivery systems will be important in the future intravesical management of NMIBC. As our understanding of the molecular diversity of NMIBC develops, molecular subtyping will become fundamental in the personalisation of intravesical treatments. Further randomised studies are urgently required to investigate the efficacy of novel intravesical treatments and novel regimens, in comparison to current standards-of-care, particularly in the context of international BCG shortages.
Collapse
Affiliation(s)
- Kelly Ward
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Mark O Kitchen
- School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Suresh-Jay Mathias
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farhat L Khanim
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|