1
|
Kruse RL, Shum T, Legras X, Barzi M, Pankowicz FP, Gottschalk S, Bissig KD. In Situ Liver Expression of HBsAg/CD3-Bispecific Antibodies for HBV Immunotherapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:32-41. [PMID: 29018834 PMCID: PMC5626922 DOI: 10.1016/j.omtm.2017.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Current therapies against hepatitis B virus (HBV) do not reliably cure chronic infection, necessitating new therapeutic approaches. The T cell response can clear HBV during acute infection, and the adoptive transfer of antiviral T cells during bone marrow transplantation can cure patients of chronic HBV infection. To redirect T cells to HBV-infected hepatocytes, we delivered plasmids encoding bispecific antibodies directed against the viral surface antigen (HBsAg) and CD3, expressed on almost all T cells, directly into the liver using hydrodynamic tail vein injection. We found a significant reduction in HBV-driven reporter gene expression (184-fold) in a mouse model of acute infection, which was 30-fold lower than an antibody only recognizing HBsAg. While bispecific antibodies triggered, in part, antigen-independent T cell activation, antibody production within hepatocytes was non-cytotoxic. We next tested the bispecific antibodies in a different HBV mouse model, which closely mimics the transcriptional template for HBV, covalently closed circular DNA (cccDNA). We found that the antiviral effect was noncytopathic, mediating a 495-fold reduction in HBsAg levels at day 4. At day 33, bispecific antibody-treated mice exhibited 35-fold higher host HBsAg immunoglobulin G (IgG) antibody production versus untreated groups. Thus, gene therapy with HBsAg/CD3-bispecific antibodies represents a promising therapeutic strategy for patients with HBV.
Collapse
Affiliation(s)
- Robert L Kruse
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Shum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xavier Legras
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank P Pankowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|