1
|
Fukushi N, Fukushi H. Prevention of fatal equine herpesvirus type 1 encephalitis in mice by immunization with a limited-replication cycle virus. Vet Microbiol 2023; 277:109633. [PMID: 36543092 DOI: 10.1016/j.vetmic.2022.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) is a devastating pathogen of horses, their natural hosts, and causes fatal encephalitis in non-natural hosts. We previously demonstrated that acylation of the tegument protein UL11 is required for viral replication in cultured cells. We created a mutant virus (EHV-1 UL12 trunc UL11 G2AC7AC9A), in which glycyl and cysteinyl residues at positions 2, 7 and 9 of UL11 that are normally acylated were replaced with alanyl residues. This virus, designated the 2/7/9 mutant, has a limited-replication cycle (LRC), in which replication stops after just a few cycles. Here, we tested whether the 2/7/9 mutant could be used as a vaccine against fatal encephalitis in a mouse model. A virulence test showed that the 2/7/9 mutant was not pathogenic in mice and elicited an antibody response. We also attempted to use the 2/7/9 mutant to immunize mice against a zebra-borne EHV-1, 94-137. Two trials were conducted, each with five immunized mice, five non-immunized and five control mice. In both trials, clinical signs and fatalities were much lower in the immunized mice than in the non-immunized mice. In addition, none of the mice in either trial developed neutralizing antibodies, indicating that the immunity induced by the 2/7/9 mutant was not due to neutralizing activity. The results indicate that the 2/7/9 LRC mutant has promise as a vaccine against EHV-1 infection non-natural hosts.
Collapse
Affiliation(s)
- Noriko Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Capuz A, Karnoub MA, Osien S, Rose M, Mériaux C, Fournier I, Devos D, Vanden Abeele F, Rodet F, Cizkova D, Salzet M. The Antibody Dependant Neurite Outgrowth Modulation Response Involvement in Spinal Cord Injury. Front Immunol 2022; 13:882830. [PMID: 35784350 PMCID: PMC9245426 DOI: 10.3389/fimmu.2022.882830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) represents a major medical challenge. At present, there is still no cure to treat it efficiently and enable functional recovery below the injury site. Previously, we demonstrated that inflammation determines the fate of the physiopathology. To decipher the molecular mechanisms involved in this process, we performed a meta-analysis of our spatio-temporal proteomic studies in the time course of SCI. This highlighted the presence of IgG isotypes in both spinal cord explants and their secretomes. These IgGs were detected in the spinal cord even if no SCI occurred. However, during the time course following SCI, abundance of IgG1 and IgG2 subclasses (a, b, c) varied according to the spatial repartition. IgG1 was clearly mostly abundant at 12 h, and a switch to IgG2a was observed after 24 h. This IgG stayed predominant 3, 7, and 10 days after SCI. A protein related to IgM as well as a variable heavy chain were only detected 12 h after lesion. Interestingly, treatment with RhoA inhibitor influenced the abundance of the various IgG isotypes and a preferential switch to IgG2c was observed. By data reuse of rat dorsal root ganglion (DRG) neurons RNAseq datasets and RT-PCR experiments performed on cDNA from DRG sensory neurons ND7/23 and N27 dopaminergic neural cell lines, we confirmed expression of immunoglobulin heavy and light chains (constant and variable) encoding genes in neurons. We then identified CD16 and CD32b as their specific receptors in sensory neuron cell line ND7/23 and their activation regulated neurites outgrowth. These results suggest that during SCI, neuronal IgG isotypes are released to modulate neurites outgrowth. Therefore, we propose a new view of the SCI response involving an antibody dependent neurite outgrowth modulation (ADNM) which could be a precursor to the neuroinflammatory response in pathological conditions.
Collapse
Affiliation(s)
- Alice Capuz
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Mélodie-Anne Karnoub
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Sylvain Osien
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Mélanie Rose
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Céline Mériaux
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - David Devos
- Université de Lille, Inserm U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, Lille, France
| | - Fabien Vanden Abeele
- Université de Lille, Inserm U1003, Laboratory of Cell Physiology, Villeneuve d’Ascq, France
| | - Franck Rodet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
- *Correspondence: Michel Salzet, ; Dasa Cizkova,
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
- *Correspondence: Michel Salzet, ; Dasa Cizkova,
| |
Collapse
|
3
|
Stoycheva D, Sandu I, Gräbnitz F, Amorim A, Borsa M, Weber S, Becher B, Oxenius A. Non-neutralizing antibodies protect against chronic LCMV infection by promoting infection of inflammatory monocytes in mice. Eur J Immunol 2021; 51:1423-1435. [PMID: 33547634 PMCID: PMC8247883 DOI: 10.1002/eji.202049068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Antibodies play an important role in host defense against microorganisms. Besides direct microbicidal activities, antibodies can also provide indirect protection via crosstalk to constituents of the adaptive immune system. Similar to many human chronic viral infections, persistence of Lymphocytic choriomeningitis virus (LCMV) is associated with compromised T- and B-cell responses. The administration of virus-specific non-neutralizing antibodies (nnAbs) prior to LCMV infection protects against the establishment of chronic infection. Here, we show that LCMV-specific nnAbs bind preferentially Ly6Chi inflammatory monocytes (IMs), promote their infection in an Fc-receptor independent way, and support acquisition of APC properties. By constituting additional T-cell priming opportunities, IMs promote early activation of virus-specific CD8 T cells, eventually tipping the balance between T-cell exhaustion and effector cell differentiation, preventing establishment of viral persistence without causing lethal immunopathology. These results document a beneficial role of IMs in avoiding T-cell exhaustion and an Fc-receptor independent protective mechanism provided by LCMV-specific nnAbs against the establishment of chronic infection.
Collapse
Affiliation(s)
| | - Ioana Sandu
- Institute of MicrobiologyETH ZürichZurichSwitzerland
| | | | - Ana Amorim
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Mariana Borsa
- Institute of MicrobiologyETH ZürichZurichSwitzerland
| | - Stefan Weber
- Institute of MicrobiologyETH ZürichZurichSwitzerland
| | - Burkhard Becher
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
4
|
Vlahava VM, Murrell I, Zhuang L, Aicheler RJ, Lim E, Miners KL, Ladell K, Suárez NM, Price DA, Davison AJ, Wilkinson GW, Wills MR, Weekes MP, Wang EC, Stanton RJ. Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus. J Clin Invest 2021; 131:139296. [PMID: 33586678 PMCID: PMC7880312 DOI: 10.1172/jci139296] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.
Collapse
Affiliation(s)
- Virginia-Maria Vlahava
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Isa Murrell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lihui Zhuang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Eleanor Lim
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolás M. Suárez
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - David A. Price
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin W.G. Wilkinson
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eddie C.Y. Wang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
The pentameric complex drives immunologically covert cell-cell transmission of wild-type human cytomegalovirus. Proc Natl Acad Sci U S A 2017; 114:6104-6109. [PMID: 28533400 DOI: 10.1073/pnas.1704809114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell-cell transmission. This process of cell-cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128-131A complex, a feature of WT but not passaged strains of HCMV.
Collapse
|
6
|
Nonneutralizing functional antibodies: a new "old" paradigm for HIV vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1023-36. [PMID: 24920599 DOI: 10.1128/cvi.00230-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high-frequency HIV-specific functional nNAb at high titers may represent an attractive hypothesis-testing strategy in future HIV vaccine efficacy trials.
Collapse
|