1
|
Ríos-Fernández P, Caicedo-Montoya C, Ríos-Estepa R. Genomic Diversity of Streptomyces clavuligerus: Implications for Clavulanic Acid Biosynthesis and Industrial Hyperproduction. Int J Mol Sci 2024; 25:10992. [PMID: 39456781 PMCID: PMC11507055 DOI: 10.3390/ijms252010992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Streptomyces clavuligerus is a species used worldwide to industrially produce clavulanic acid (CA), a molecule that enhances antibiotic effectiveness against β-lactamase-producing bacterial strains. Despite its low inherent CA production, hyper-producing strains have been developed. However, genomic analyses specific to S. clavuligerus and CA biosynthesis are limited. Genomic variations that may influence CA yield were explored using S. clavuligerus strain genomes from diverse sources. Despite the slight differences obtained by similarity index calculation, pan-genome estimation revealed that only half of the genes identified were present in all strains. As expected, core genes were associated with primary metabolism, while the remaining genes were linked to secondary metabolism. Differences at the sequence level were more likely to be found in regions close to the tips of the linear chromosome. Wild-type strains preserved larger chromosomal and plasmid regions compared to industrial and/or hyper-producing strains; such a grouping pattern was also found through refined phylogenetic analyses. These results provide essential insights for the development of hyper-producing S. clavuligerus strains, attending to the critical demand for this antibiotic enhancer and contributing to future strategies for CA production optimization.
Collapse
Affiliation(s)
- Paula Ríos-Fernández
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Carlos Caicedo-Montoya
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Rigoberto Ríos-Estepa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
2
|
Giraldi V, Magagnano G, Giacomini D, Cozzi PG, Gualandi A. Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams. Beilstein J Org Chem 2024; 20:2461-2468. [PMID: 39376491 PMCID: PMC11457124 DOI: 10.3762/bjoc.20.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
The direct nucleophilic addition of amides to unfunctionalized alkenes via photoredox catalysis represents a facile approach towards functionalized alkylamides. Unfortunately, the scarce nucleophilicity of amides and competitive side reactions limit the utility of this approach. Herein, we report an intramolecular photoredox cyclization of alkenes with β-lactams in the presence of an acridinium photocatalyst. The approach uses an intramolecular nucleophilic addition of the β-lactam nitrogen atom to the radical cation photogenerated in the linked alkene moiety, followed by hydrogen transfer from the hydrogen atom transfer (HAT) catalyst. This process was used to successfully prepare 2-alkylated clavam derivatives.
Collapse
Affiliation(s)
- Valentina Giraldi
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Giandomenico Magagnano
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry “G. Ciamician”, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, ALMA MATER STUDIORUM - Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
3
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
4
|
Wen W, Hu M, Gao Y, Zhang P, Meng W, Zhang F, Fan B, Wang F, Li S. Effect of Soy Protein Products on Growth and Metabolism of Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus. Foods 2024; 13:1525. [PMID: 38790825 PMCID: PMC11121397 DOI: 10.3390/foods13101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial nitrogen sources are promising, and soy protein as a plant-based nitrogen source has absolute advantages in creating microbial culture medium in terms of renewability, eco-friendliness, and greater safety. Soy protein is rich in variety due to different extraction technologies and significantly different in the cell growth and metabolism of microorganisms as nitrogen source. Therefore, different soy proteins (soy meal powder, SMP; soy peptone, SP; soy protein concentrate, SPC; soy protein isolate, SPI; and soy protein hydrolysate, SPH) were used as nitrogen sources to culture Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus to evaluate the suitable soy nitrogen sources of the above strains. The results showed that B. subtilis had the highest bacteria density in SMP medium; S. lactis had the highest bacteria density in SPI medium; and S. clavuligerus had the highest PMV in SPI medium. Nattokinase activity was the highest in SP medium; the bacteriostatic effect of nisin was the best in SPI medium; and the clavulanic acid concentration was the highest in SMP medium. Based on analyzing the correlation between the nutritional composition and growth metabolism of the strains, the results indicated that the protein content and amino acid composition were the key factors influencing the cell growth and metabolism of the strains. These findings present a new, high-value application opportunity for soybean protein.
Collapse
Affiliation(s)
- Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Fengxia Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| |
Collapse
|
5
|
Wang H, Yang Y, Wang S, Badawy S, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Antimicrobial sensitisers: Gatekeepers to avoid the development of multidrug-resistant bacteria. J Control Release 2024; 369:25-38. [PMID: 38508527 DOI: 10.1016/j.jconrel.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The resistance of multidrug-resistant bacteria to existing antibiotics forces the continued development of new antibiotics and antibacterial agents, but the high costs and long timeframe involved in the development of new agents renders the hope that existing antibiotics may again play a part. The "antibiotic adjuvant" is an indirect antibacterial strategy, but its vague concept has, in the past, limited the development speed of related drugs. In this review article, we put forward an accurate concept of a "non-self-antimicrobial sensitisers (NSAS)", to distinguish it from an "antibiotic adjuvant", and then discuss several scientific methods to restore bacterial sensitivity to antibiotics, and the sources and action mechanism of existing NSAS, in order to guide the development and further research of NSAS.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
6
|
Asres E, Layloff T, Ashenef A. Development and validation of a high-performance thin layer chromatography method for the simultaneous determination of amoxicillin and clavulanic acid combinations in tablet dosage forms. Heliyon 2023; 9:e22891. [PMID: 38144316 PMCID: PMC10746409 DOI: 10.1016/j.heliyon.2023.e22891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
A simple and sensitive high-performance thin layer chromatography (HPTLC) method was developed and validated as per the International Council for Harmonization (ICH) guidelines for the simultaneous determination of amoxicillin (AMX) and clavulanic acid (CLA) combinations in tablet formulations. Chromatography was performed on precoated glass plates with normal phase silica gel 60 F254. The mobile phase was acetone:ethyl acetate:glacial acetic acid:water (11:9:4:2 (v/v)). The plate was scanned at a wavelength of 428 nm after derivatization with ninhydrin. The validation of the method revealed that the linearity range lies between 400 and 1200 ng/band for AMX and 100-300 ng/band for CLA, with coefficients of determination of 0.9997 and 0.9966, respectively. Recoveries in standard addition accuracy studies were 100.3 % for AMX and 96.75 % for CLA. The limit of detection (LOD) and limit of quantitation (LOQ) of the developed method are 20.3 ng/band and 61.6 ng/band for AMX and 18.5 ng/band and 56.2 ng/band for CLA, respectively. The new, novel high-performance thin layer chromatography (HPTLC) method that was successfully developed in this study was applied for the simultaneous determination of AMX and CLA in their fixed-dose tablet dosage forms obtained from retail pharmacies and offered comparable results with the official British Pharmacopoeial high-performance liquid chromatography (HPLC) method.
Collapse
Affiliation(s)
- Esubalew Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, P.O. Box 260, Mizan, Ethiopia
| | - Thomas Layloff
- Consultant, P O Box 286, Granite City, IL, 62040-0286, USA
| | - Ayenew Ashenef
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, P.o.Box. 9086, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Cruz-Bautista R, Ruíz-Villafán B, Romero-Rodríguez A, Rodríguez-Sanoja R, Sánchez S. Trends in the two-component system's role in the synthesis of antibiotics by Streptomyces. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12623-z. [PMID: 37341754 DOI: 10.1007/s00253-023-12623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Despite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task. The transmembrane nature of the sensor kinases and the high content of GC in the streptomycetes represent significant challenges in their study. In some examples, adding elements to the assay medium has determined the respective ligand. However, a complete TCS description and characterization requires specific amounts of the involved proteins that are most difficult to obtain. The availability of enough sensor histidine kinase concentrations could facilitate the identification of the ligand-protein interaction, and besides would allow the establishment of its phosphorylation mechanisms and determine their tridimensional structure. Similarly, the advances in the development of bioinformatics tools and novel experimental techniques also promise to accelerate the TCSs description and provide knowledge on their participation in the regulation processes of secondary metabolite formation. This review aims to summarize the recent advances in the study of TCSs involved in antibiotic biosynthesis and to discuss alternatives to continue their characterization. KEY POINTS: • TCSs are the environmental signal transducers more abundant in nature. • The Streptomyces have some of the highest number of TCSs found in bacteria. • The study of signal transduction between SHKs and RRs domains is a big challenge.
Collapse
Affiliation(s)
- Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| | - Beatriz Ruíz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Fu J, Xie X, Zhang S, Kang N, Zong G, Zhang P, Cao G. Rich Organic Nitrogen Impacts Clavulanic Acid Biosynthesis through the Arginine Metabolic Pathway in Streptomyces clavuligerus F613-1. Microbiol Spectr 2023; 11:e0201722. [PMID: 36515504 PMCID: PMC9927107 DOI: 10.1128/spectrum.02017-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clavulanic acid (CA) is the preferred clinical drug for the treatment of infections by β-lactam antibiotic-resistant bacteria. CA is produced by Streptomyces clavuligerus, and although there have been many reports on the effects of carbon and nitrogen sources on CA production, the mechanisms involved remain unclear. In this study, we found that CA accumulation in S. clavuligerus F613-1 was increased significantly in MH medium, which is rich in organic nitrogen, compared with that in ML medium, which contains half the amount of organic nitrogen present in MH medium. Transcriptome analysis revealed that genes involved in CA biosynthesis, such as ceas1, ceas2, bls1, bls2, cas2, pah2, gcaS, and cad, and arginine biosynthesis, such as argB, argC, argD, argG, argH, argJ, and argR, were upregulated under rich organic nitrogen. Metabolome data revealed notable differences between cultures of F613-1 grown in MH and ML media with regard to levels of key intracellular metabolites, most of which are involved in arginine metabolic pathways, including arginine, glutamine, and glutamic acid. Additionally, supplementation of ML medium with arginine, glutamine, or glutamic acid resulted in increased CA production by S. clavuligerus F613-1. Our results indicate that rich organic nitrogen mainly affects CA biosynthesis by increasing the levels of amino acids associated with the arginine metabolic pathway and activating the expression of the CA biosynthetic gene cluster. These findings provide important insights for improving medium optimization and engineering of S. clavuligerus F613-1 for high-yield production of CA. IMPORTANCE The bacterium Streptomyces clavuligerus is used for the industrial production of the broad-spectrum β-lactamase inhibitor clavulanic acid (CA). However, much remains unknown about the factors which affect CA yields. We investigated the effects of different levels of organic nitrogen on CA production. Our analyses indicate that higher organic nitrogen levels were associated with increased CA yields and increased levels of arginine biosynthesis. Further analyses supported the relationship between arginine metabolism and CA production and demonstrated that increasing the levels of arginine or associated amino acids could boost CA yields. These findings suggest approaches for improving the production of this clinically important antibiotic.
Collapse
Affiliation(s)
- Jiafang Fu
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xinru Xie
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Shaowei Zhang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ni Kang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Gongli Zong
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Peipei Zhang
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Biomedical Sciences College, Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Arer V, Kar D. Biochemical exploration of β-lactamase inhibitors. Front Genet 2023; 13:1060736. [PMID: 36733944 PMCID: PMC9888030 DOI: 10.3389/fgene.2022.1060736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
The alarming rise of microbial resistance to antibiotics has severely limited the efficacy of current treatment options. The prevalence of β-lactamase enzymes is a significant contributor to the emergence of antibiotic resistance. There are four classes of β-lactamases: A, B, C, and D. Class B is the metallo-β-lactamase, while the rest are serine β-lactamases. The clinical use of β-lactamase inhibitors began as an attempt to combat β-lactamase-mediated resistance. Although β-lactamase inhibitors alone are ineffective against bacteria, research has shown that combining inhibitors with antibiotics is a safe and effective treatment that not only prevents β-lactamase formation but also broadens the range of activity. These inhibitors may cause either temporary or permanent inhibition. The development of new β-lactamase inhibitors will be a primary focus of future research. This study discusses recent advances in our knowledge of the biochemistry behind β-lactam breakdown, with special emphasis on the mechanism of inhibitors for β-lactam complexes with β-lactamase. The study also focuses on the pharmacokinetic and pharmacodynamic properties of all inhibitors and then applies them in clinical settings. Our analysis and discussion of the challenges that exist in designing inhibitors might help pharmaceutical researchers address root issues and develop more effective inhibitors.
Collapse
|
10
|
Gómez-Ríos D, Ramírez-Malule H, Neubauer P, Junne S, Ríos-Estepa R, Ochoa S. Tuning of fed-batch cultivation of Streptomyces clavuligerus for enhanced Clavulanic Acid production based on genome-scale dynamic modeling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
SspH, a Novel HATPase Family Regulator, Controls Antibiotic Biosynthesis in Streptomyces. Antibiotics (Basel) 2022; 11:antibiotics11050538. [PMID: 35625182 PMCID: PMC9137472 DOI: 10.3390/antibiotics11050538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces can produce a wealth of pharmaceutically valuable antibiotics and other bioactive compounds. Production of most antibiotics is generally low due to the rigorously controlled regulatory networks, in which global/pleiotropic and cluster-situated regulatory proteins coordinate with various intra- and extracellular signals. Thus, mining new antibiotic regulatory proteins, particularly the ones that are widespread, is essential for understanding the regulation of antibiotic biosynthesis. Here, in the biopesticide milbemycin producing strain Streptomyces bingchenggensis, a novel global/pleiotropic regulatory protein, SspH, a single domain protein containing only the HATPase domain, was identified as being involved in controlling antibiotic biosynthesis. The sspH overexpression inhibited milbemycin production by repressing the expression of milbemycin biosynthetic genes. The sspH overexpression also differentially influenced the expression of various antibiotic biosynthetic core genes. Site-directed mutagenesis revealed that the HATPase domain was essential for SspH’s function, and mutation of the conserved amino acid residues N54A and D84A led to the loss of SspH function. Moreover, cross-overexpression experiments showed that SspH and its orthologs, SCO1241 from Streptomyces coelicolor and SAVERM_07097 from Streptomyces avermitilis, shared identical functionality, and all exerted a positive effect on actinorhodin production but a negative effect on avermectin production, indicating that SspH-mediated differential control of antibiotic biosynthesis may be widespread in Streptomyces. This study extended our understanding of the regulatory network of antibiotic biosynthesis and provided effective targets for future antibiotic discovery and overproduction.
Collapse
|
12
|
Patiño LF, Aguirre-Hoyos V, Pinilla LI, Toro LF, Ríos-Estepa R. Environmental Factors Modulate the Role of orf21 Sigma Factor in Clavulanic Acid Production in Streptomyces Clavuligerus ATCC27064. Bioengineering (Basel) 2022; 9:bioengineering9020078. [PMID: 35200432 PMCID: PMC8869649 DOI: 10.3390/bioengineering9020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Sigma factors and sigma factor-related mechanisms control antibiotic production in Streptomyces. In this contribution, the orf21 gene was overexpressed in the wild-type strain of Streptomyces clavuligerus ATCC2764, yielding S. clavuligerus/pIORF21, to further evaluate its regulatory effect on clavulanic acid (CA) biosynthesis under different culture medium conditions. The orf21 overexpression, regulated under the constitutive promoter ermE*, led to 2.6-fold increase in CA production in GSPG medium, and a 1.8-fold decrease using ISP medium. As for GYM and MYM media, S. clavuligerus/pIORF21 strain showed higher aerial mycelium production compared to control. Glycerol uptake rate profile was affected by orf21 overexpression. Furthermore, in GSPG, S. clavuligerus/pIORF21 slightly increased the expression of adpA and gcas genes, whilst, in ISP, the claR gene expression was drastically reduced, which is consistent with a decreased CA production, observed in this medium. These findings suggest the protein encoded by the orf21 gene plays a role in the regulation of CA biosynthesis as a response to the nutritional composition of the medium.
Collapse
|
13
|
Pivk Lukančič P, Drčar T, Bruccoleri R, Črnugelj M, Mrak P. Teleocidin-producing genotype of Streptomyces clavuligerus ATCC 27064. Appl Microbiol Biotechnol 2022; 106:1521-1530. [PMID: 35138454 PMCID: PMC8882083 DOI: 10.1007/s00253-022-11805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Streptomyces clavuligerus is an industrially important producer of clavulanic acid (CA), a β-lactamase inhibitor which is used together with amoxicillin in one of the most widely prescribed antibacterial medicines, the co-amoxiclav. In a mid-eighties ATCC vial of S. clavuligerus ATCC 27064 culture, we have found a new genotype, which was apparently lost from the subsequent ATCC collection stocks, and has remained obscure to the scientific community. Most importantly, this genotype harbors teleocidin (lyngbyatoxin) biosynthetic genes, which are located on an enigmatic 138 kb chromosomal region and support accumulation of significant amounts of these highly toxic, tumor-promoting secondary metabolites in cultures of S. clavuligerus. While this genomic region is completely absent from all published sequences for S. clavuligerus ATCC strain, at least one of the industrial strains for commercial production of CA, originating from ATCC 27064, retained the genetic potential for production of teleocidins. The origin of teleocidin biosynthetic cluster can now be traced back to early S. clavuligerus stocks at the ATCC. Our work provides a genome sequence and a deposited monoisolate of this genotype. Given the scale of industrial use of S. clavuligerus world-wide and toxicity of teleocidins, we also discuss the environmental and safety implications and provide a method of abolishing teleocidin production without affecting productivity of CA. Key points • Early stocks of S. clavuligerus ATCC 27064 produce toxic teleocidins • Teleocidin biosynthetic genes were found within a distinct S. clavuligerus genotype • The genotype has been passed on to some industrial clavulanic acid producer strains Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11805-5.
Collapse
Affiliation(s)
| | - Tjaša Drčar
- Novartis Technical Operations, MS&T Antiinfectives, Mengeš, Slovenia
| | | | - Martin Črnugelj
- Sandoz Development Center Slovenia, Physical Analytics Department, Ljubljana, Slovenia
| | - Peter Mrak
- Novartis Technical Operations, MS&T Antiinfectives, Mengeš, Slovenia.
| |
Collapse
|
14
|
Dávila Costa JS, Guerrero DS, Romero CM. Streptomyces: connecting red-nano and grey biotechnology fields. Crit Rev Microbiol 2021; 48:565-576. [PMID: 34651534 DOI: 10.1080/1040841x.2021.1991272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anthropogenic activities are often related to the occurrence of simultaneous contaminations with heavy metals and toxic organic compounds. In addition, the increasing demand for food, clothing, and technology has increased the worldwide contamination level. Although it is not fully demonstrated, the high level of contamination in association with the indiscriminate use of antibiotics, led to the appearance of multi-resistant pathogenic microorganisms. Grey and red biotechnologies try to counteract the negative effects of pollution and antimicrobial resistance respectively. Streptomyces is well known in the field of biotechnology. In this review, we discussed the potential of these bacteria to deal with organic and inorganic pollutants and produce nanostructures with antimicrobial activity. To our knowledge, this is the first work in which a biotechnological bacterial genus such as Streptomyces is revised in two different fields of global concern, contamination, and multi-drugs resistant microorganisms.
Collapse
Affiliation(s)
| | | | - Cintia Mariana Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
15
|
Abstract
The Streptomyces clavuligerus genome consists in a linear chromosome of about 6.7 Mb and four plasmids (pSCL1 to pSCL4), the latter one of 1.8 Mb. Deletion of pSCL4, results in viable mutants with high instability in the chromosome arms, which may lead to chromosome circularisation. Transcriptomic and proteomic studies comparing different mutants with the wild-type strain improved our knowledge on the biosynthesis and regulation of clavulanic acid, cephamycin C and holomycin. Additional knowledge has been obtained on the SARP-type CcaR activator and the network of connections with other regulators (Brp, AreB, AdpA, BldG, RelA) controlling ccaR expression. The transcriptional pattern of the cephamycin and clavulanic acid clusters is supported by the binding of CcaR to different promoters and confirmed that ClaR is a CcaR-dependent activator that controls the late steps of clavulanic biosynthesis. Metabolomic studies allowed the detection of new metabolites produced by S. clavuligerus such as naringenin, desferroxamines, several N-acyl tunicamycins, the terpenes carveol and cuminyl alcohol or bafilomycin J. Heterologous expression of S. clavuligerus terpene synthases resulted in the formation of no less than 15 different terpenes, although none of them was detected in S. clavuligerus culture broth. In summary, application of the Omic tools results in a better understanding of the molecular biology of S. clavuligerus, that allows the use of this strain as an industrial actinobacterial platform and helps to improve CA production.
Collapse
Affiliation(s)
- Paloma Liras
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| | - Juan F Martín
- Microbiology Section. Department of Molecular Biology University of León, León 24071. Spain
| |
Collapse
|
16
|
El-Gendy MMAA, Yahya SMM, Hamed AR, El-Bondkly AMA. Assessment of the phylogenetic analysis and antimicrobial, antiviral, and anticancer activities of marine endophytic Streptomyces species of the soft coral Sarcophyton convolutum. Int Microbiol 2021; 25:133-152. [PMID: 34427819 DOI: 10.1007/s10123-021-00204-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
In the present work, the extensive biological activities of marine endophytic Streptomyces strains isolated from marine soft coral Sarcophyton convolutum have been demonstrated. Within fifty-one Streptomyces isolates evaluated for their hydrolytic enzymes and enzyme inhibitors productivities, six isolates showed the hyperactivities. Pharmaceutical metabolites productivities evaluated include enzymes (alkaline protease, L-asparaginase, L-glutaminase, tyrosinase, and L-methioninase) and enzyme inhibitors (inhibitors of α-amylase, hyaluronidase, β-lactamase, α-glucosidase, and β-glucosidase). These isolates were identified based on their morphological, biochemical, and genetic characteristics as Streptomyces sp. MORSY 17, Streptomyces sp. MORSY 22, Streptomyces sp. MORSY 25, Streptomyces sp. MORSY 36, Streptomyces sp. MORSY 45, and Streptomyces sp. MORSY 50. Moreover, in further evaluation, these strains exhibited wide spectrum of antimicrobial (against bacteria and fungi), antiviral (against hepatitis C virus), antibiofilm against biofilm-forming bacteria (methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas species), and anti-proliferative activities (against liver and colon carcinoma cell lines). The GC-MS analysis of the hyperactive strains MORSY 17 and MORSY 22 revealed the presence of different bioactive agents in the ethyl acetate extract of both strains.
Collapse
Affiliation(s)
| | - Shaymaa M M Yahya
- Hormones Department, Medical Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department and Biology Unit, Central Lab for the Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Bohouth St, Dokki, 12622, Giza, Egypt
| | | |
Collapse
|
17
|
Ramirez-Malule H, López-Agudelo VA, Gómez-Ríos D, Ochoa S, Ríos-Estepa R, Junne S, Neubauer P. TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus. Bioengineering (Basel) 2021; 8:103. [PMID: 34436106 PMCID: PMC8389198 DOI: 10.3390/bioengineering8080103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Streptomyces clavuligerus (S. clavuligerus) has been widely studied for its ability to produce clavulanic acid (CA), a potent inhibitor of β-lactamase enzymes. In this study, S. clavuligerus cultivated in 2D rocking bioreactor in fed-batch operation produced CA at comparable rates to those observed in stirred tank bioreactors. A reduced model of S. clavuligerus metabolism was constructed by using a bottom-up approach and validated using experimental data. The reduced model was implemented for in silico studies of the metabolic scenarios arisen during the cultivations. Constraint-based analysis confirmed the interrelations between succinate, oxaloacetate, malate, pyruvate, and acetate accumulations at high CA synthesis rates in submerged cultures of S. clavuligerus. Further analysis using shadow prices provided a first view of the metabolites positive and negatively associated with the scenarios of low and high CA production.
Collapse
Affiliation(s)
| | | | - David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Medellín 050010, Colombia; (D.G.-R.); (S.O.)
| | - Rigoberto Ríos-Estepa
- Escuela de Biociencias, Universidad Nacional de Colombia sede Medellín, Medellín 050010, Colombia;
| | - Stefan Junne
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany; (S.J.); (P.N.)
| |
Collapse
|
18
|
Beyß M, Parra-Peña VD, Ramirez-Malule H, Nöh K. Robustifying Experimental Tracer Design for 13C-Metabolic Flux Analysis. Front Bioeng Biotechnol 2021; 9:685323. [PMID: 34239861 PMCID: PMC8258161 DOI: 10.3389/fbioe.2021.685323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
13C metabolic flux analysis (MFA) has become an indispensable tool to measure metabolic reaction rates (fluxes) in living organisms, having an increasingly diverse range of applications. Here, the choice of the13C labeled tracer composition makes the difference between an information-rich experiment and an experiment with only limited insights. To improve the chances for an informative labeling experiment, optimal experimental design approaches have been devised for13C-MFA, all relying on some a priori knowledge about the actual fluxes. If such prior knowledge is unavailable, e.g., for research organisms and producer strains, existing methods are left with a chicken-and-egg problem. In this work, we present a general computational method, termed robustified experimental design (R-ED), to guide the decision making about suitable tracer choices when prior knowledge about the fluxes is lacking. Instead of focusing on one mixture, optimal for specific flux values, we pursue a sampling based approach and introduce a new design criterion, which characterizes the extent to which mixtures are informative in view of all possible flux values. The R-ED workflow enables the exploration of suitable tracer mixtures and provides full flexibility to trade off information and cost metrics. The potential of the R-ED workflow is showcased by applying the approach to the industrially relevant antibiotic producer Streptomyces clavuligerus, where we suggest informative, yet economic labeling strategies.
Collapse
Affiliation(s)
- Martin Beyß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | | | | | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|