1
|
Cergole-Novella MC, Enne VI, Pignatari ACC, Carvalho E, Guth BEC. Acquisition of plasmids from Shiga toxin-producing Escherichia coli strains had low or neutral fitness cost on commensal E. coli. Braz J Microbiol 2024; 55:1297-1304. [PMID: 38396221 PMCID: PMC11153473 DOI: 10.1007/s42770-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Although it has been hypothesized that the acquisition of plasmids-especially those bearing virulence factors and antimicrobial resistance genes-increases the energetic burden and reduces the fitness of a bacterium in general, some results have challenged this view, showing little or no effect on fitness after plasmid acquisition, which may lead to change in the view that there are evolutionary barriers for a wide spread of such plasmids among bacteria. Here, to evaluate the fitness impact of plasmid-encoded antibiotic resistance and virulence genes, plasmids from O26:H11, O111:H8, and O118:H16 Shiga toxin-producing Escherichia coli (STEC) human and bovine isolates were transferred to the non-virulent E. coli HS and K-12 MG1655 strains. Sequencing and PCR were used to characterize plasmids, and to identify the presence of antimicrobial resistance and/or virulence genes. The fitness impact of plasmids encoding virulence and antimicrobial resistance upon bacterial hosts was determined by pairwise growth competition. Plasmid profile analysis showed that STEC strains carried one or more high and low molecular weight plasmids belonging to the B/O, F, I, K, P, Q, and/or X incompatibility groups encoding virulence genes (SPATE-encoding genes) and/or antimicrobial resistance genes (aadA1, strAB, tetA, and/or tetB). Competition experiments demonstrated that the biological cost of carriage of these plasmids by the commensal E. coli strain HS or the laboratory strain E. coli K-12 MG1655 was low or non-existent, ranging from - 4.7 to 5.2% per generation. This suggests that there are few biological barriers-or, alternatively, it suggests that there are biological barriers that we were not able to measure in this competition model-against the spread of plasmid encoding virulence and resistance genes from STEC to other, less pathogenic E. coli strains. Thus, our results, in opposition to a common view, suggest that the acquisition of plasmids does not significantly affect the bacteria fitness and, therefore, the theorized plasmid burden would not be a significant barrier for plasmid spread.
Collapse
Affiliation(s)
- Maria Cecilia Cergole-Novella
- Laboratorio Regional de Santo Andre, Instituto Adolfo Lutz, Santo Andre, SP, Brazil.
- Department of Microbiology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Immunology, Parasitology, Sao Paulo, SP, Brazil.
| | - Virve Irene Enne
- Department of Clinical Microbiology, University College London, London, UK
| | | | - Eneas Carvalho
- Bacteriology Laboratory, Butantan Institute, Sao Paulo, SP, Brazil
| | - Beatriz Ernestina Cabilio Guth
- Department of Microbiology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Immunology, Parasitology, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
3
|
Muteeb G. Network meta-analysis of antibiotic resistance patterns in gram-negative bacterial infections: a comparative study of carbapenems, fluoroquinolones, and aminoglycosides. Front Microbiol 2023; 14:1304011. [PMID: 38098660 PMCID: PMC10720636 DOI: 10.3389/fmicb.2023.1304011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Antimicrobial resistance poses a grave global threat, particularly with the emergence of multidrug-resistant gram-negative bacterial infections, which severely limit treatment options. The increasing global threat of antimicrobial resistance demands rigorous investigation, particularly concerning multidrug-resistant gram-negative bacterial infections that present limited therapeutic options. This study employed a network meta-analysis, a powerful tool for comparative effectiveness assessment of diverse antibiotics. The primary aim of this study was to comprehensively evaluate and compare resistance patterns among widely used antibiotic classes, namely carbapenems, fluoroquinolones, and aminoglycosides, for combating gram-negative pathogens. Methods We searched PubMed, Web of Sciences, Scopus, Scholarly, Medline, Embase, and Cochrane databases up to August 27, 2023. Studies showing antibiotic resistance in clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii exposed to carbapenems, fluoroquinolones, and aminoglycosides were included. This study determined treatment-specific resistance percentages and ranked these treatments based on resistance using a random-effects network meta-analysis technique. To investigate the impact of the study and pathogen features, subgroup and meta-regression analyses were performed. Risk ratios and 95% confidence intervals (CIs) were calculated using a network meta-analysis (NMA) incorporating both direct and indirect evidence. Clinical improvement, cure, microbiological eradication, and death from any cause were the primary outcomes. Nephrotoxicity was a secondary result. Results The analysis included 202 publications and 365,782 gram-negative isolates. The NMA included data from 20 studies and 4,835 patients. Carbapenems had the lowest resistance rates throughout the pathogen spectrum, with resistance percentages of 17.1, 22.4, and 33.5% for Enterobacteriaceae, P. aeruginosa, and A. baumannii, respectively. For the same infections, aminoglycosides showed resistance rates of 28.2, 39.1, and 50.2%, respectively. Fluoroquinolones had the highest resistance rates at 43.1, 57.3, and 65.7%, respectively. Unexpectedly, resistance to all three antibiotic classes has increased over time, with multidrug resistance being the most prevalent. Conclusion This extensive network meta-analysis provides an overview of the patterns of resistance throughout the world and how they are changing. The most effective choice is still carbapenems, but the increasing resistance highlights the critical need for multimodal therapies to protect antibiotic effectiveness against these powerful gram-negative infections.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Sidhu AS, Mikolajczyk FN, Fisher JC. Antimicrobial Resistance Linked to Septic System Contamination in the Indiana Lake Michigan Watershed. Antibiotics (Basel) 2023; 12:antibiotics12030569. [PMID: 36978436 PMCID: PMC10044017 DOI: 10.3390/antibiotics12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Extended-spectrum β-lactamases confer resistance to a variety of β-lactam antimicrobials, and the genes for these enzymes are often found on plasmids that include additional antimicrobial resistance genes (ARG). We surveyed aquatic environments in the Indiana Lake Michigan watershed in proximity to areas with high densities of residential septic systems to determine if human fecal contamination from septic effluent correlated with the presence of antimicrobial resistance genes and phenotypically resistant bacteria. Of the 269 E. coli isolated from environmental samples and one septic source, 97 isolates were resistant to cefotaxime, a third-generation cephalosporin. A subset of those isolates showed phenotypic resistance to other β-lactams, fluoroquinolones, sulfonamides, and tetracyclines. Quantitative PCR was used to quantify human-associated Bacteroides dorei gene copies (Human Bacteroides) from water samples and to identify the presence of ARG harbored on plasmids from E. coli isolates or in environmental DNA. We found a strong correlation between the presence of ARG and human fecal concentrations, which supports our hypothesis that septic effluent is a source of ARG and resistant organisms. The observed plasmid-based resistance adds an additional level of risk, as human-associated bacteria from septic systems may expand the environmental resistome by acting as a reservoir of transmissible resistance genes.
Collapse
|
5
|
Vélez MV, Colello R, Etcheverría AI, Padola NL. [Shiga toxin producing Escherichia coli: the challenge of adherence to survive]. Rev Argent Microbiol 2023; 55:100-107. [PMID: 35676186 DOI: 10.1016/j.ram.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/05/2021] [Accepted: 04/19/2022] [Indexed: 10/18/2022] Open
Abstract
Shiga Toxin-producing Escherichia coli (STEC) is recognized as being responsible for a large number of foodborne illnesses around the world. The pathogenicity of STEC has been related to Stx toxins. However, the ability of STEC to colonize the host and other surfaces can be essential for developing its pathogenicity. Different virulence profiles detected in STEC could cause the emergence of strains carrying new genes codified in new pathogenicity islands linked to metabolism and adherence. Biofilm formation is a spontaneous mechanism whereby STEC strains resist in a hostile environment being able to survive and consequently infect the host through contaminated food and food contact surfaces. Biofilm formation shows intra-and inter-serotype variability, and its formation does not depend only on the microorganisms involved. Other factors related to the environment (such as pH, temperature) and the surface (stainless steel and polystyrene) influence biofilm expression. The «One Health» concept implies the interrelation between public, animal, and environmental health actors to ensure food safety, prevent cross-contamination and resistance to sanitizers, highlighting the need to identify emerging pathogens through new molecular markers of rapid detection that involve STEC strains carrying the Locus of Enterocyte Effacement or Locus of Adhesion and Autoaggregation.
Collapse
Affiliation(s)
- M V Vélez
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - R Colello
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - A I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - N L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina.
| |
Collapse
|
6
|
Draft Genome Sequences of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli O116:H25 Strains from Ready-to-Eat Foods Sold in Lagos, Nigeria. Microbiol Resour Announc 2022; 11:e0031422. [PMID: 35862915 PMCID: PMC9387260 DOI: 10.1128/mra.00314-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Draft genomes of multidrug-resistant Shiga toxin-producing Escherichia coli (STEC) strains IPK9(1) and IKS1(2), which were isolated from ready-to-eat foods (kokoro and shawarma) sold in Lagos, Nigeria, are reported. The genomes possessed genetic determinants for virulence and the antibiotic resistance gene for macrolide-associated resistance mdf(A). Ready-to-eat foods increase public health threats in Nigeria.
Collapse
|
7
|
Kusi J, Ojewole CO, Ojewole AE, Nwi-Mozu I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics (Basel) 2022; 11:821. [PMID: 35740227 PMCID: PMC9219700 DOI: 10.3390/antibiotics11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023] Open
Abstract
Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
Collapse
Affiliation(s)
- Joseph Kusi
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Catherine Oluwalopeye Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Akinloye Emmanuel Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Isaac Nwi-Mozu
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA;
| |
Collapse
|
8
|
Abdallah R, Kuete Yimagou E, Hadjadj L, Mediannikov O, Ibrahim A, Davoust B, Barciela A, Hernandez-Aguilar RA, Diatta G, Sokhna C, Raoult D, Rolain JM, Baron SA. Population Diversity of Antibiotic Resistant Enterobacterales in Samples From Wildlife Origin in Senegal: Identification of a Multidrug Resistance Transposon Carrying blaCTX–M–15 in Escherichia coli. Front Microbiol 2022; 13:838392. [PMID: 35369484 PMCID: PMC8971907 DOI: 10.3389/fmicb.2022.838392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction The role of wildlife in the transmission of antimicrobial resistant (AMR) is suspected but scarcely reported in current studies. Therefore, we studied the dynamics and prevalence of antibiotic-resistant Enterobacterales in antibiotic-limited areas of Senegal. Materials and Methods We collected fecal samples from monkeys and apes (N = 226) and non-fecal environmental samples (N = 113) from Senegal in 2015 and 2019. We grew the samples on selective media, subsequently isolated AMR Enterobacterales, and then sequenced their genomes. Results We isolated 72 different Enterobacterales among which we obtained a resistance rate of 65% for colistin (N = 47/72) and 29% for third generation-cephalosporin (C3G) (29%, N = 21/72). Interestingly, almost 46% of our isolates, among Enterobacter sp., Citrobacter cronae and Klebsiella aerogenes, belong to 34 new STs. Moreover, the genes blaCTX–M–15, blaTEM1B, sul2, dfrA14, qnrs, aph(3′′), aph(6), tetA, and tetR harbored within a transposon on the IncY plasmid of ST224 Escherichia coli were transferred and inserted into a ST10 E. coli phage coding region. Conclusion Wildlife constitutes a rich, unexplored reservoir of natural microbial diversity, AMR genes and international resistant clones pathogenic in humans. The presence of a transposon that carries AMR genes is intriguing since no antibiotics are used in the non-human primates we studied.
Collapse
Affiliation(s)
- Rim Abdallah
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Edmond Kuete Yimagou
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Linda Hadjadj
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ahmad Ibrahim
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Amanda Barciela
- Dindefelo Biological Station, Jane Goodall Institute Spain and Senegal, Kedougou, Senegal
| | - R. Adriana Hernandez-Aguilar
- Dindefelo Biological Station, Jane Goodall Institute Spain and Senegal, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Georges Diatta
- VITROME IRD 257, Campus International de Recherche IRD-UCAD de Hann, Dakar, Senegal
| | - Cheikh Sokhna
- IHU Méditerranée Infection, Marseille, France
- VITROME IRD 257, Campus International de Recherche IRD-UCAD de Hann, Dakar, Senegal
| | - Didier Raoult
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- *Correspondence: Sophie Alexandra Baron,
| |
Collapse
|
9
|
Montelongo Hernandez C, Putonti C, Wolfe AJ. Characterizing Plasmids in Bacteria Species Relevant to Urinary Health. Microbiol Spectr 2021; 9:e0094221. [PMID: 34937183 PMCID: PMC8694116 DOI: 10.1128/spectrum.00942-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
The urinary tract has a microbial community (the urinary microbiota or urobiota) that has been associated with human health. Whole genome sequencing of bacteria is a powerful tool, allowing investigation of the genomic content of the urobiota, also called the urinary microbiome (urobiome). Bacterial plasmids are a significant component of the urobiome yet are understudied. Because plasmids can be vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. In this project, we sought plasmids in 11 clinically relevant urinary species: Aerococcus urinae, Corynebacterium amycolatum, Enterococcus faecalis, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Lactobacillus gasseri, Lactobacillus jensenii, Staphylococcus epidermidis, Streptococcus anginosus, and Streptococcus mitis. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in other species sequenced thus far. Some identified plasmidic assemblies were predicted to have putative virulence and/or antibiotic resistance genes, although the majority of their annotated coding regions were of unknown predicted function. In this study, we report on plasmids from urinary species as a first step to understanding the role of plasmids in the bacterial urobiota. IMPORTANCE The microbial community of the urinary tract (urobiota) has been associated with human health. Whole genome sequencing of bacteria permits examination of urobiota genomes, including plasmids. Because plasmids are vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. Currently, urobiota plasmids are understudied. Here, we sought plasmids in 11 clinically relevant urinary species. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in the other 6 species. We identified putative virulence and/or antibiotic resistance genes in some of the plasmidic assemblies, but most of their annotated coding regions were of unknown function. This is a first step to understanding the role of plasmids in the bacterial urobiota.
Collapse
Affiliation(s)
- Cesar Montelongo Hernandez
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
10
|
Kimera ZI, Mgaya FX, Mshana SE, Karimuribo ED, Matee MIN. Occurrence of Extended Spectrum Beta Lactamase (ESBL) Producers, Quinolone and Carbapenem Resistant Enterobacteriaceae Isolated from Environmental Samples along Msimbazi River Basin Ecosystem in Tanzania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168264. [PMID: 34444027 PMCID: PMC8394723 DOI: 10.3390/ijerph18168264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022]
Abstract
We conducted environmental surveillance of antimicrobial resistance (AMR) bacteria in the Msimbazi river basin in Tanzania to determine the occurrence of extended-spectrum β-lactamase (ESBL)-producing, carbapenem resistant Enterobacteriaceae (CRE) and quinolone resistant Escherichia coli and Klebsiella spp. A total of 213 Enterobacteriaceae isolates were recovered from 219 samples. Out of the recovered isolates, 45.5% (n = 97) were Klebsiella pneumoniae and 29.6% (n = 63) were Escherichia coli. K. pneumoniae isolates were more resistant in effluent (27.9%) compared to the E. coli (26.6%). The E. coli had a higher resistance in river water, sediment and crop soil than the K. pneumoniae (35 versus 25%), respectively. Higher resistance in K. pneumoniae was found in nalidixic acid (54.6%) and ciprofloxacin (33.3%) while the E. coli isolates were highly resistant to ciprofloxacin (39.7%) and trimethoprim/sulfamethoxazole (38%). Resistance increased from 28.3% in Kisarawe, where the river originates, to 59.9% in Jangwani (the middle section) and 66.7% in Upanga West, where the river enters the Indian Ocean. Out of 160 E. coli and K. pneumoniae isolates, 53.2% (n = 85) were resistant to more than three classes of the antibiotic tested, occurrence being higher among ESBL producers, quinolone resistant and carbapenem resistant strains. There is an urgent need to curb environmental contamination with antimicrobial agents in the Msimbazi Basin.
Collapse
Affiliation(s)
- Zuhura I. Kimera
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania; (F.X.M.); (M.I.N.M.)
- Ministry of Livestock and Fisheries, Mtumba Area, P.O. Box 2182, Dodoma 40487, Tanzania
- Correspondence:
| | - Fauster X. Mgaya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania; (F.X.M.); (M.I.N.M.)
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza 33109, Tanzania;
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| | - Esron D. Karimuribo
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3021, Morogoro 67125, Tanzania
| | - Mecky I. N. Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania; (F.X.M.); (M.I.N.M.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| |
Collapse
|
11
|
Zhao X, Lv Y, Adam FEA, Xie Q, Wang B, Bai X, Wang X, Shan H, Wang X, Liu H, Dang R, Wang J, Yang Z. Comparison of Antimicrobial Resistance, Virulence Genes, Phylogroups, and Biofilm Formation of Escherichia coli Isolated From Intensive Farming and Free-Range Sheep. Front Microbiol 2021; 12:699927. [PMID: 34394043 PMCID: PMC8362090 DOI: 10.3389/fmicb.2021.699927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Pathogenic E. coli are among the most frequently isolated bacterial pathogens on large-scale sheep farms in China. Antibiotic use in wool sheep production is a risk factor for promoting the emergence of resistant E. coli. To reveal the differences of E. coli populations in sheep from different farming systems the antimicrobial resistance, virulence genes, biofilm formation, and phylogroups of 500 E. coli isolates obtained between September 2019 and December 2020 in northwest China from diarrheic infections of intensive farming and free-range sheep were analyzed. The antimicrobial susceptibility test for 12 classes of antimicrobial agents was determined using the broth microdilution susceptibility method, and PCR was used to detect the differences in virulence genes and phylogroups. Additionally, biofilm formation was determined using microtiter plate and slide agglutination methods. Among the 500 E. coli isolates, the majority of the isolates were multidrug resistant (75.4%) and carried at least one virulence gene (94.8%). We observed that 412 (82.4%), 360 (72.0%), and 266 (53.2%) are found to be resistant to sulfisoxazole, florfenicol, and tetracyclines, respectively. Resistance was also observed to mequindox (46.8%), ampicillin (43.6%), spectinomycin (38.6%), enrofloxacin (34.2%), ceftiofur (21.0%), gentamycin (20.4%), ceftazidime (17.8%), and polymyxin B (7.8%) but no resistance was found to meropenem. These results showed that strains from free-range subjects had fewer antibiotic resistance strains rather than sheep that were intensively farmed (P < 0.05). We observed fifteen virulence genes, of which etrA (n = 401, 80.2%) is the most common. In addition, EAEC (86.4%) is dominant among free-range sheep and EHEC (80.1%) is dominant among intensive farming. Among all virulence genes, the strongest correlation was found between etrA and papC gene (P < 0.001, OR = 455.68). Similarly, the strongest correlation was also found between eltA and sulfisoxazole (P < 0.001, OR = 877). Furthermore, the majority of the E. coli isolates belonged to phylogroup B1 (50.6%), followed by phylogroup C (20.6%), A (7.4%), E (7.4%), D (5.8%), B2 (1.6%), and F (1%). Interestingly, phylogroup B2 and D were all distributed in intensive farms. In addition, 33 (6.6%), 373 (74.6%), and 94 (18.8%) showed moderate, weak, and no connection biofilm formation ability, respectively. These data uncovered that wool sheep serve as a reservoir of pathogenic E. coli harboring multiple resistance phenotypes and virulence genes. The overlapping virulence-associated traits between IPEC and ExPEC indicated the zoonotic potential and safety threats of sheep food products. It is urgent to improve the proper use of antimicrobials in China as well as other countries.
Collapse
Affiliation(s)
- Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunyang Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | | | - Qingfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyuan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Honghu Shan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|