1
|
Dubreuil LJ. Fifty years devoted to anaerobes: historical, lessons, and highlights. Eur J Clin Microbiol Infect Dis 2024; 43:1-15. [PMID: 37973693 DOI: 10.1007/s10096-023-04708-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Renew interest and enthusiasm for anaerobes stem from both technological improvements (culture media, production of an adequate anaerobic atmosphere, identification methods) and greater awareness on the part of clinicians. Anaerobic infections were historically treated empirically, targeting the species known to be involved in each type of infection. Prevotella, fusobacteria, and Gram-positive cocci (GPAC) were considered responsible for infections above the diaphragm whereas for intra-abdominal infections, Bacteroides of the fragilis group (BFG), GPAC and clostridia were predominantly implicated. The antibiotic susceptibility of anaerobes was only taken into consideration by the clinician in the event of treatment failure or when faced with infections by multidrug-resistant bacteria (MDR). The evolution of antibiotic resistance together with clinical failures due to the absence of detection of hetero-resistant clones has resulted in a greater need for accessible antibiotic susceptibility testing (AST) and disc diffusion method. Improved isolation and identification of anaerobes, along with the availability of accessible and robust methods for performing AST, will ensure that treatment, whether empirical or guided by an antibiogram, will lead to better outcomes for anaerobic infections.
Collapse
Affiliation(s)
- Luc J Dubreuil
- Clinical Microbiology Department, Faculty of Pharmacy, University of Lille, Lille, France.
| |
Collapse
|
2
|
Fang H, Li X, Yan MK, Tong MK, Chow KH, Cheng VCC, Ho PL. Antimicrobial susceptibility of Bacteroides fragilis group organisms in Hong Kong, 2020-2021. Anaerobe 2023; 82:102756. [PMID: 37429411 DOI: 10.1016/j.anaerobe.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVES This retrospective study analyzed the susceptibility levels of Bacteroides fragilis group (BFG) in a hospital-based laboratory where disk diffusion test (DDT) was routinely performed. Isolates non-susceptible to imipenem and metronidazole by DDT were further investigated using a gradient method. METHODS The DDT and MIC susceptibility data of clindamycin, metronidazole, moxifloxacin and imipenem obtained on Brucella blood agar for 1264 non-duplicated isolates during 2020-2021 were analyzed. Species identification was obtained by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and 16S rRNA sequencing. Interpretative agreement of DDT results using the 2015 EUCAST tentative and 2021 CA-SFM breakpoints was compared against MIC as the reference. RESULTS The dataset included 604 B. fragilis (483 division I, 121 division II isolates), 415 non-fragilis Bacteroides, 177 Phocaeicola and 68 Parabacteroides. Susceptibility rates for clindamycin (22.1-62.1%) and moxifloxacin (59.9-80.9%) were low and many had no inhibition zones. At the EUCAST and CA-SFM breakpoints, 83.0 and 89.4% were imipenem-susceptible, and 89.6% and 97.4 were metronidazole-susceptible. MIC testing confirmed 11.4% and 2.8% isolates as imipenem-non-susceptible and metronidazole-resistant, respectively. Significant numbers of false-susceptibility and/or false-resistance results were observed at the CA-SFM breakpoint but not the EUCAST breakpoint. Higher rates of imipenem and/or metronidazole resistance were detected in B. fragilis division II, B. caccae, B. ovatus, B. salyersiae, B. stercoris and Parabacteroides. Co-resistance to imipenem and metronidazole was detected in 3 B. fragilis division II isolates. CONCLUSIONS The data demonstrated emerging BFG resistance to several important anti-anaerobic antibiotics and highlights the importance of anaerobic susceptibility testing in clinical laboratories to guide therapy.
Collapse
Affiliation(s)
- Hanshu Fang
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Li
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong Special Administrative Region of China
| | - Mei-Kum Yan
- Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong Special Administrative Region of China
| | - Man-Ki Tong
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kin-Hung Chow
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong Special Administrative Region of China
| | - Pak-Leung Ho
- Department of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Liew KC, O’Keeffe J, Rajandas H, Lee YP, Harris O, Parimannan S, Croft L, Athan E. Insights into the Evolution of P. aeruginosa Antimicrobial Resistance in a Patient Undergoing Intensive Therapy. Antibiotics (Basel) 2023; 12:antibiotics12030483. [PMID: 36978350 PMCID: PMC10044667 DOI: 10.3390/antibiotics12030483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Whole genome sequencing (WGS) provides insights into the evolution of antimicrobial resistance, an urgent global health threat. Using WGS, we observe evolutionary adaptation of a Pseudomonas aeruginosa strain within an immunocompromised patient undergoing antibiotic therapy. Two blood isolates (EA-86 and EA-87) from the patient evolved separate adaptations for antibiotic resistance, while sharing common adaptive mutations for host immune evasion. In EA-86, a silencing mutation in the antibiotic efflux pump repressor, NfxB, increased antibiotic resistance, while in EA-87, a similar mutation was seen in the antibiotic efflux pump repressor mexR. The number of genomic variants between the two isolates give a divergence time estimate of the order of 1000 generations. This time is sufficient for a bacterial lineage to have evolved an SNP in every position in the genome and been fixed if advantageous. This demonstrates the evolutionary adaptive power accessible to bacteria and the timescale for a brute-force functional survey of the SNP fitness landscape.
Collapse
Affiliation(s)
- Kwee Chin Liew
- Australian Clinical Labs, Department of Microbiology, Geelong, VIC 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Jessica O’Keeffe
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Heera Rajandas
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia
- Deakin Genomic Centre, Deakin University, Geelong, VIC 3216, Australia
| | - Yin Peng Lee
- Deakin Genomic Centre, Deakin University, Geelong, VIC 3216, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Owen Harris
- Australian Clinical Labs, Department of Microbiology, Geelong, VIC 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sivachandran Parimannan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia
- Deakin Genomic Centre, Deakin University, Geelong, VIC 3216, Australia
- Correspondence: (S.P.); (L.C.)
| | - Larry Croft
- Deakin Genomic Centre, Deakin University, Geelong, VIC 3216, Australia
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Correspondence: (S.P.); (L.C.)
| | - Eugene Athan
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia
| |
Collapse
|
4
|
Fernández Vecilla D, Roche Matheus MP, Pérez Ramos IS, Urrutikoetxea Gutiérrez MJ, Iglesias Hidalgo G, Calvo Muro FE, Díaz de Tuesta Del Arco JL. Is Bacteroides finegoldii a new bacterial pathogen? Anaerobe 2023; 79:102690. [PMID: 36586473 DOI: 10.1016/j.anaerobe.2022.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Bacteoides finegoldii is a Gram-negative, rod-shaped and obligate anaerobic bacteria isolated in human feces during studies of intestinal microbiota. We present a case report in which B. finegoldii was isolated and identified from the blood culture of a 93-year-old patient with abdominal pain. Microbiological identification was performed by MALDI-TOF MS and confirmed later by 16S rRNA sequencing. An abdomino-pelvic CT scan was conducted, showing a mass of neoplastic appearance that infiltrated the sigmoid colon and bladder, probably producing a colo-vesical fistula. Up to now, this is the first report of B. finegoldii causing human infection.
Collapse
Affiliation(s)
- Domingo Fernández Vecilla
- Clinical Microbiology and Parasitology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| | - Mary Paz Roche Matheus
- Clinical Microbiology and Parasitology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| | - Iris Sharon Pérez Ramos
- Clinical Microbiology and Parasitology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| | - Mikel Joseba Urrutikoetxea Gutiérrez
- Clinical Microbiology and Parasitology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| | - Gotzon Iglesias Hidalgo
- Radiodiagnosis Service of Cruces University Hospital, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| | - Felicitas Elena Calvo Muro
- Clinical Microbiology and Parasitology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| | - José Luis Díaz de Tuesta Del Arco
- Clinical Microbiology and Parasitology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain.
| |
Collapse
|
5
|
Antimicrobial Susceptibility and Clinical Findings of Anaerobic Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11030351. [PMID: 35326814 PMCID: PMC8944802 DOI: 10.3390/antibiotics11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
|
6
|
Sóki J, Lang U, Schumacher U, Nagy I, Berényi Á, Fehér T, Burián K, Nagy E. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1553-1556. [PMID: 35296904 PMCID: PMC9472255 DOI: 10.1093/jac/dkac088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
Objectives Methods Results Conclusions
Collapse
Affiliation(s)
- József Sóki
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Corresponding author. E-mail:
| | - Uwe Lang
- Medical Care Centre Laboratory Münster, Münster, Germany
| | | | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Loránd Eötvös Research Network, Szeged, Hungary
- SEQOMICS Ltd, Mórahalom, Hungary
| | - Ágnes Berényi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Loránd Eötvös Research Network, Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Baquer F, Ali Sawan A, Auzou M, Grillon A, Jaulhac B, Join-Lambert O, Boyer PH. Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing. Antibiotics (Basel) 2021; 10:antibiotics10080975. [PMID: 34439025 PMCID: PMC8388896 DOI: 10.3390/antibiotics10080975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/05/2022] Open
Abstract
Antimicrobial susceptibility testing of anaerobes is challenging. Because MIC determination is recommended by both CLSI and EUCAST, commercial broth microdilution and diffusion strip tests have been developed. The reliability of broth microdilution methods has not been assessed yet using the agar dilution reference method. In this work, we evaluated two broth microdilution kits (MICRONAUT-S Anaerobes® MIC and Sensititre Anaerobe MIC®) and one gradient diffusion strip method (Liofilchem®) for antimicrobial susceptibility testing of 47 Clostridiales isolates (Clostridium, Clostridioides and Hungatella species) using the agar dilution method as a reference. The evaluation focused on comparing six antimicrobial molecules available in both microdilution kits. Analytical performances were evaluated according to the Food and Drug Administration (FDA) recommendations. Essential agreements (EA) and categorical agreements (CA) varied greatly according to the molecule and the evaluated method. Vancomycin had values of essential and categorical agreements above 90% for the three methods. The CA fulfilled the FDA criteria for three major molecules in the treatment of Gram-positive anaerobic infections (metronidazole, piperacillin/tazobactam and vancomycin). The highest rate of error was observed for clindamycin. Multicenter studies are needed to further validate these results.
Collapse
Affiliation(s)
- Florian Baquer
- Laboratory of Bacteriology, Strasbourg University Hospital, F-67000 Strasbourg, France; (F.B.); (A.A.S.); (A.G.); (B.J.)
| | - Asma Ali Sawan
- Laboratory of Bacteriology, Strasbourg University Hospital, F-67000 Strasbourg, France; (F.B.); (A.A.S.); (A.G.); (B.J.)
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Michel Auzou
- Research Group on Microbial Adaptation GRAM 2.0, Department of Microbiology and Hygiene, Caen University Hospital of Caen, UniCaen-UniRouen, F-14033 Caen, France; (M.A.); (O.J.-L.)
| | - Antoine Grillon
- Laboratory of Bacteriology, Strasbourg University Hospital, F-67000 Strasbourg, France; (F.B.); (A.A.S.); (A.G.); (B.J.)
- Institute of Bacteriology, University of Strasbourg, UR7290, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - Benoît Jaulhac
- Laboratory of Bacteriology, Strasbourg University Hospital, F-67000 Strasbourg, France; (F.B.); (A.A.S.); (A.G.); (B.J.)
- Institute of Bacteriology, University of Strasbourg, UR7290, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - Olivier Join-Lambert
- Research Group on Microbial Adaptation GRAM 2.0, Department of Microbiology and Hygiene, Caen University Hospital of Caen, UniCaen-UniRouen, F-14033 Caen, France; (M.A.); (O.J.-L.)
| | - Pierre H. Boyer
- Laboratory of Bacteriology, Strasbourg University Hospital, F-67000 Strasbourg, France; (F.B.); (A.A.S.); (A.G.); (B.J.)
- Institute of Bacteriology, University of Strasbourg, UR7290, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France
- Correspondence:
| |
Collapse
|