1
|
Farook NAM, Argimón S, Samat MNA, Salleh SA, Sulaiman S, Tan TL, Periyasamy P, Lau CL, Azami NAM, Raja Abd Rahman RMF, Ang MY, Neoh HM. Desiccation tolerance and reduced antibiotic resistance: Key drivers in ST239-III to ST22-IV MRSA clonal replacement at a Malaysian teaching hospital. Int J Med Microbiol 2024; 317:151638. [PMID: 39437562 DOI: 10.1016/j.ijmm.2024.151638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Molecular surveillance of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Hospital Canselor Tuanku Muhriz (HCTM), a Malaysian teaching hospital revealed clonal replacement events of SCCmec type III-SCCmercury to SCCmec type IV strains before the year 2017; however, the reasons behind this phenomenon are still unclear. This study aimed to identify factors associated with the clonal replacement using genomic sequencing and phenotypic investigations (antibiogram profiling, growth rate and desiccation tolerance determination, survival in vancomycin sub-minimum inhibitory concentration (MIC) determination) of representative HCTM MRSA strains isolated in four-year intervals from 2005 - 2017 (n = 16). HCTM Antimicrobial Stewardship (AMS) and Infection Prevention and Control (IPC) policies were also reviewed. Phylogenetic analyses revealed the presence of 3 major MRSA lineages: ST239-III, ST22-IV and ST6-IV; MRSAs with the same STs shared similar core and accessory genomes. Majority of the ST239-III strains isolated in earlier years of the surveillance (2005, 2009 and 2013) were resistant to many antibiotics and harboured multiple AMR and virulence genes compared to ST22-IV and ST6-IV strains (isolated in 2013 and 2017). Interestingly, ST22-IV and ST6-IV MRSAs grew significantly faster and were more resistant to desiccation than ST239-III (p < 0.05), even though the later clone survived better post-vancomycin exposure. Intriguingly, ST22-IV was outcompeted by ST239-III in broth co-cultures; though it survived better when desiccated together with ST239-III. Higher desiccation tolerance and fewer carriage of AMR genes by ST22-IV, together with reduction of antibiotic selection pressure in HCTM (due to AMS and IPC policies) during 2005 - 2017 may have provided the clone a competitive edge in replacing the previously dominant ST239-III in HCTM. This study highlights the importance of MRSA surveillance for a clearer picture of circulating clones and clonal changes. To our knowledge, this is the first genomic epidemiology study of MRSA in Malaysia, which will serve as baseline genomic data for future surveillance.
Collapse
Affiliation(s)
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, United Kingdom
| | | | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Malaysia
| | - Sunita Sulaiman
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Petrick Periyasamy
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Chee Lan Lau
- Department of Pharmacy, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Malaysia
| | | | | | - Mia Yang Ang
- Department of Diagnostics & Allied Health Science, Faculty of Health & Life Sciences, Management & Science University, Malaysia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Malaysia.
| |
Collapse
|
2
|
Hanafiah A, Sukri A, Yusoff H, Chan CS, Hazrin-Chong NH, Salleh SA, Neoh HM. Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:127. [PMID: 38391513 PMCID: PMC10885873 DOI: 10.3390/antibiotics13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Hospital environmental surfaces are potential reservoirs for transmitting hospital-associated pathogens. This study aimed to profile microbiomes and antibiotic resistance genes (ARGs) from hospital environmental surfaces using 16S rRNA amplicon and metagenomic sequencing at a tertiary teaching hospital in Malaysia. Samples were collected from patient sinks and healthcare staff counters at surgery and orthopaedic wards. The samples' DNA were subjected to 16S rRNA amplicon and shotgun sequencing to identify bacterial taxonomic profiles, antibiotic resistance genes, and virulence factor pathways. The bacterial richness was more diverse in the samples collected from patient sinks than those collected from staff counters. Proteobacteria and Verrucomicrobia dominated at the phylum level, while Bacillus, Staphylococcus, Pseudomonas, and Acinetobacter dominated at the genus level. Staphylococcus epidermidis and Staphylococcus aureus were prevalent on sinks while Bacillus cereus dominated the counter samples. The highest counts of ARGs to beta-lactam were detected, followed by ARGs against fosfomycin and cephalosporin. We report the detection of mcr-10.1 that confers resistance to colistin at a hospital setting in Malaysia. The virulence gene pathways that aid in antibiotic resistance gene transfer between bacteria were identified. Environmental surfaces serve as potential reservoirs for nosocomial infections and require mitigation strategies to control the spread of antibiotic resistance bacteria.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hamidah Yusoff
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hui-Min Neoh
- UKM Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Junaidi NSSA, Shakrin NNSM, Desa MNM, Yunus WMZW. Dissemination Pattern of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus and Community-Acquired MRSA Isolates from Malaysian Hospitals: A Review from a Molecular Perspective. Malays J Med Sci 2023; 30:26-41. [PMID: 37102054 PMCID: PMC10125240 DOI: 10.21315/mjms2023.30.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 04/28/2023] Open
Abstract
The global emergence of methicillin-resistant Staphylococcus aureus (MRSA) that unsusceptible to a wide selection of antimicrobial agents and any newly introduced antimicrobial over the past decades has triggered more extensive holistic measures to put an end to this situation. Molecular surveillance of MRSA clones is important to understand their evolutionary dynamics for investigating outbreaks, propagating precautionary measures, as well as planning for appropriate treatment. This review includes peer-reviewed reports on the molecular characterisation of clinical Staphylococcus aureus isolates within Malaysian hospitals from year 2008 to 2020. This work highlights the molecular clones of hospital-acquired MRSA (HA-MRSA) and community-acquired MRSA (CA-MRSA) isolates from Malaysian hospitals, with description on their ever-changing pattern. Among HA-MRSA, the ST22-t032-SCCmec IV MRSA clone was reported to supplant the previous dominating clone, ST239-t037-SCCmec III. Meanwhile, ST30, ST772, ST6 and ST22 were repeatedly detected in CA-MRSA, however, none of the strains became predominant. Future in-depth study on molecular epidemiology of MRSA clone is essential for the investigation of the extent of the clonal shift, especially in Malaysia.
Collapse
Affiliation(s)
| | - Nik Noorul Shakira Mohamed Shakrin
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
- Centre for Tropicalization, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Selangor, Malaysia
| | - Wan Md Zin Wan Yunus
- Centre for Tropicalization, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Hospitalized Newborn Infants. Diagnostics (Basel) 2023; 13:diagnostics13061050. [PMID: 36980357 PMCID: PMC10047632 DOI: 10.3390/diagnostics13061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Multidrug resistance (MDR) is a significant challenge in healthcare management, and addressing it requires a comprehensive approach. In this study, we employed a combination of phenotypic and genotypic approaches, along with whole genome sequencing (WGS) to investigate five hospital-associated MDR methicillin-resistant Staphylococcus aureus (MRSA) strains that were isolated from newborn infants. Our analysis revealed the following for the MDR-MRSA strains: SauR31 was resistant to three antimicrobial classes; SauR12, SauR91 and SauR110 were resistant to four antimicrobial classes; and SauR23 exhibited resistance to seven classes. All the MDR-MRSA strains were capable of producing slime and biofilms, harbored SCCmec type IV, and belonged to different spa types (t022, t032, and t548), with varying profiles for microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and virulence genes. The WGS data for the MDR SauR23 and SauR91 strains revealed that most of the antimicrobial resistance genes were present in the chromosomes, including blaZ, mecA, norA, lmrS, and sdrM, with only the ermC gene found in a small (<3 kb) plasmid. The presence of MDR-MRSA strains among neonates raises public concern, hence implementation of multifaceted interventions is recommended to address this issue. In addition, metadata is needed to improve the investigation of antimicrobial resistance genes in MDR isolates.
Collapse
|
5
|
Diversity and Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) Genotypes in Southeast Asia. Trop Med Infect Dis 2022; 7:tropicalmed7120438. [PMID: 36548693 PMCID: PMC9781663 DOI: 10.3390/tropicalmed7120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a successful pathogen that has achieved global dissemination, with high prevalence rates in Southeast Asia. A huge diversity of clones has been reported in this region, with MRSA ST239 being the most successful lineage. Nonetheless, description of MRSA genotypes circulating in the Southeast Asia region has, until now, remained poorly compiled. In this review, we aim to provide a better understanding of the molecular epidemiology and distribution of MRSA clones in 11 Southeast Asian countries: Singapore, Malaysia, Thailand, Vietnam, Cambodia, Lao People's Democratic Republic (PDR), Myanmar, Philippines, Indonesia, Brunei Darussalam, and Timor-Leste. Notably, while archaic multidrug-resistant hospital-associated (HA) MRSAs, such as the ST239-III and ST241-III, were prominent in the region during earlier observations, these were then largely replaced by the more antibiotic-susceptible community-acquired (CA) MRSAs, such as ST22-IV and PVL-positive ST30-IV, in recent years after the turn of the century. Nonetheless, reports of livestock-associated (LA) MRSAs remain few in the region.
Collapse
|
6
|
Al-Talib H, Samsudin S, Adnan A, Murugaiah C. Genetic Diversity among Methicillin-Resistant Staphylococcus aureus in Malaysia (2002-2020). Trop Med Infect Dis 2022; 7:360. [PMID: 36355902 PMCID: PMC9692495 DOI: 10.3390/tropicalmed7110360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
UNLABELLED 1. BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a common organism seen in both healthcare-associated and community-associated infections worldwide and in Malaysia over the past two decades. The aim of this review is to provide a firsthand documentation of all MRSA strains prevalent in the Malaysian population from 2002 to present and briefly describe the changing patterns. 2. METHODS Electronic and manual intensive literature searches were conducted between 2002 and 2020, addressing issues directly related to patients and published in the English language were selected. 3. RESULTS The literature search retrieved a total of 2217 articles and abstracts of 27 articles. The search yielded a total of 24 articles on genotyping of MRSA in Malaysia. The study found that MRSA strains were mostly genetically related and resulted in the predominant MRSA clones that caused active infections. Thirty-six different sequence types (ST) were recorded. The highest rates of STs detected were ST239 (52.6%), ST1 (47.4%), and ST22 (42.1%). The majority of studies showed that both SCCmec types III and IV were the most common SCCm type in Malaysia, followed by SCCmec type V (57.9%). 4. CONCLUSIONS Both Brazilian (ST 239 IIIA) and Hungarian (ST 239-III) MRSA strains were detected in Malaysia. PFGE remains the best method for comparing MRSA strains. However, whole-genome sequencing has a promising chance to replace PFGE in the future.
Collapse
Affiliation(s)
- Hassanain Al-Talib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh 47000, Malaysia
| | - Syahirah Samsudin
- Institute for Medical and Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Sungai Buloh 47000, Malaysia
| | - Ariza Adnan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh 47000, Malaysia
| | - Chandrika Murugaiah
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
7
|
Youssef CRB, Kadry AA, Mohammed El-Ganiny A. The alarming coincidence of toxin genes with staphylococcal cassette Chromosome mec (SCCmec) in clinical MRSA isolates. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|