1
|
Thepmalee C, Khoothiam K, Thatsanasuwan N, Rongjumnong A, Suwannasom N, Thephinlap C, Nuntaboon P, Panya A, Chumphukam O, Chokchaisiri R. Comprehensive phytochemical profiling and biological activities of Hodgsonia heteroclita subsp. indochinensis seed extracts. Heliyon 2024; 10:e36686. [PMID: 39286088 PMCID: PMC11402745 DOI: 10.1016/j.heliyon.2024.e36686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hodgsonia heteroclita subsp. indochinensis, a member of the Cucurbitaceae family, is utilized in traditional medicinal remedies based on indigenous wisdom. This study aimed to comprehensively identify and analyze the bioactive phytoconstituents within H. heteroclita subsp. indochinensis seeds. Seeds were sequentially extracted with n-hexane, ethyl acetate, and methanol. Liquid chromatography-mass spectrometry analysis detected ferulic acid, salicylic acid, cucurbitacin E, stigmasterol glucoside, and β-sitosterol glucoside in all extracts. The total phenolic content in the HH(S)-EtOAc and HH(S)-MeOH was 14.22 ± 1.58 and 12.98 ± 1.03 mg gallic acid equivalent/g, respectively. Consequently, the HH(S)-EtOAc demonstrated antioxidant activity with an IC50 of 1.10 ± 0.28 mg/mL, while the HH(S)-MeOH displayed strong antioxidant potential with an IC50 of 0.04 ± 0.00 mg/mL according to an ABTS assay. Antibacterial evaluations of both the HH(S)-hexane and HH(S)-EtOAc revealed significant activity against Staphylococcus aureus (zone of inhibition (ZOI): 13.67 ± 2.31 and 11.67 ± 1.53 mm, respectively) but limited activity against Escherichia coli (ZOI: 7.33 ± 0.58 and 7.67 ± 0.58 mm, respectively). Additionally, the extracts exhibited low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, ranging from 62.50 to 250 mg/mL. The antiproliferative activity of seed extracts was assessed against two breast cancer cell lines (MCF-7 and MDA-MB-231), normal breast cells (MCF10A), and human embryonic kidney (HEK) 293T cells, through MTT and clonogenic assays. The results revealed IC50 values exceeding 400 μg/mL, indicating that the extracts are safe. Furthermore, all seed extracts (50 μg/mL) exhibited potent anti-inflammatory activity, evident by their substantial inhibition of nitric oxide production (p < 0.001) and inducible nitric oxide synthase (iNOS) gene expression (p < 0.05) in LPS-induced RAW264.7. These findings demonstrate the potential for H. heteroclita subsp. indochinensis seed extracts in the development of functional foods, nutraceuticals, and dietary supplements due to their diverse bioactive compounds and substantial biological activities, particularly their anti-inflammatory effects.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Krissana Khoothiam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Natthaphon Thatsanasuwan
- Division of Nutrition and Dietetics, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Artitaya Rongjumnong
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Nittiya Suwannasom
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chonthida Thephinlap
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Orada Chumphukam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | | |
Collapse
|
2
|
Zamora-Mendoza L, Vispo SN, De Lima L, Mora JR, Machado A, Alexis F. Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves. Molecules 2023; 28:molecules28041591. [PMID: 36838578 PMCID: PMC9960609 DOI: 10.3390/molecules28041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
This research reported a hydrogel loaded with the ethanolic and methanolic extracts of Eupatorium glutinosum Lam. The E. glutinosum extracts were characterized by phytochemical screening, Fourier-transform infrared spectroscopy (FTIR), thin-layer chromatography (TLC), and UV/Vis profile identification. This research also evaluated the pharmacological activity of the extracts using antimicrobial, antioxidant, and anti-inflammatory assays prior to polymeric encapsulation. Results indicate that extracts inhibit the Escherichia colii DH5-α (Gram negative) growth; excellent antioxidant activity was evaluated by the ferric reducing power and total antioxidant activity assays, and extracts showed an anti-hemolytic effect. Moreover, the cotton and microcrystalline cellulose hydrogels demonstrate successful encapsulation based on characterization and kinetics studies such as FTIR, extract release, and swelling degree. Moreover, effective antibacterial activity was registered by the loaded hydrogel. The overall results encourage and show that Eupatorium glutinosum-loaded hydrogel may find a wide range of bandage and wound healing applications in the biomedical area.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Santiago Nelson Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
- Correspondence: (S.N.V.); (F.A.)
| | - Lola De Lima
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - José R. Mora
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - António Machado
- Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Correspondence: (S.N.V.); (F.A.)
| |
Collapse
|
3
|
Chemical Characterization of Honey and Its Effect (Alone as well as with Synthesized Silver Nanoparticles) on Microbial Pathogens' and Human Cancer Cell Lines' Growth. Nutrients 2023; 15:nu15030684. [PMID: 36771391 PMCID: PMC9919140 DOI: 10.3390/nu15030684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The antibacterial, anticancer, and wound-healing effects of honey can vary according to the type, geographical region, honey bee species, and source of the flowers. Nanotechnology is an innovative and emerging field of science with an enormous potential role in medical, cosmetics, and industrial usages globally. Metal nanoparticles that derived from silver and range between 1 nm and 100 nm in size are called silver nanoparticles (AgNPs). Much advanced research AgNPs has been conducted due to their potential antibacterial and anticancer activity, chemical stability, and ease of synthesis. The purpose of the present study was to explore the physicochemical properties of honey and the potential to use forest honey to synthesize AgNPs as well as to appraise the nanoparticles' antimicrobial and anticancer effects. Here, we used three different percentages of forest honey (20%, 40%, and 80%) as biogenic mediators to synthesize AgNPs at room temperature. The development of AgNPs was confirmed by color change (to the naked eye) and ultraviolet-visible spectroscopy studies, respectively. The absorbance peak obtained between 464 to 4720 nm validated both the surface plasmon resonance (SPR) band and the formation of AgNPs. Regarding the sugar profile, the contents of maltose and glucose were lower than the content of fructose. In addition, the results showed that the SPR band of AgNPs increased as the percentage of forest honey increased due to the elevation of the concentration of the bio-reducing agent. A bacterial growth kinetic assay indicated the strong antibacterial efficacy of honey with silver nanoparticles against each tested bacterial strain. Honey with nanotherapy was the most effective against hepatocellular carcinoma (HepG2) and colon cancer (HCT 116) cells, with IC50s of 23.9 and 27.4 µg/mL, respectively, while being less effective against breast adenocarcinoma cells (MCF-7), with an IC50 of 32.5 µg/mL.
Collapse
|
4
|
Hama Gharib DS, Salman RF. Feasibility of the crude extracts of Amorphophallus paeoniifolius and Colocasia esculenta as intracanal medicaments in endodontic therapy in comparison to the 940 nm diode laser: An in vitro antimicrobial study. J Dent Sci 2023; 18:145-156. [PMID: 36643226 PMCID: PMC9831863 DOI: 10.1016/j.jds.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose The elimination and debridement of intracanal bacteria are credited with long-term effectiveness in endodontic therapy. This study aimed to compare the antimicrobial efficacies of Amorphophallus paeoniifolius (Suran), Colocasia esculenta (Aravi) crude extracts as intracanal medicaments with calcium hydroxide (CH), 2% chlorhexidine (CHX) gel, and 940 nm diode laser. Materials and methods Fifty-eight intact, single-root, extracted human mandibular premolar teeth were prepared. The samples were sterilized, transferred into microcentrifuge tubes, and inoculated with E. faecalis. The samples were placed in an incubator for three weeks to allow the biofilm to grow. Then the samples were randomly divided into five experimental groups (n = 10), disinfected with Suran, Aravi crude extracts, CH, 2% CHX gel, and a 940 nm diode laser. The negative control group (n = 4) and the positive control group (n = 4). Then the samples were observed under light and scanning electron microscopy to monitor the E. faecalis biofilm. The sampling method was carried out in paper point (intracanal) and Peeso bur (intradentinal). Later the number of colony-forming units was counted and analyzed. Results Colony-forming units were significantly reduced in the 2% CHX gel in both sampling methods, while Suran showed lower colony-forming units compared to Aravi and CH. The differences between experimental groups were not statistically significant (P > 0.05) in both sampling methods. Conclusion This study showed that the application of Suran and Aravi crude extracts as intracanal medicaments leads to a significant reduction in the number of bacterial colonies compared to CH, 2% CHX gel, and 940 nm diode laser.
Collapse
Affiliation(s)
- Didar Sadiq Hama Gharib
- Department of Conservative Dentistry, College of Dentistry, University of Sulaimani, As Sulaymaniyah, 46001, Iraq
- Corresponding author. Department of Conservative Dentistry, College of Dentistry, University of Sulaimani, As Sulaymaniyah, 46001, Iraq.
| | - Raid Fahim Salman
- Department of Conservative Dentistry, College of Dentistry, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
5
|
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front Pharmacol 2022; 13:891535. [PMID: 35712721 PMCID: PMC9195866 DOI: 10.3389/fphar.2022.891535] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
Azadirachta indica (A. Juss), also known as the neem tree, has been used for millennia as a traditional remedy for a multitude of human ailments. Also recognized around the world as a broad-spectrum pesticide and fertilizer, neem has applications in agriculture and beyond. Currently, the extensive antimicrobial activities of A. indica are being explored through research in the fields of dentistry, food safety, bacteriology, mycology, virology, and parasitology. Herein, some of the most recent studies that demonstrate the potential of neem as a previously untapped source of novel therapeutics are summarized as they relate to the aforementioned research topics. Additionally, the capacity of neem extracts and compounds to act against drug-resistant and biofilm-forming organisms, both of which represent large groups of pathogens for which there are limited treatment options, are highlighted. Updated information on the phytochemistry and safety of neem-derived products are discussed as well. Although there is a growing body of exciting evidence that supports the use of A. indica as an antimicrobial, additional studies are clearly needed to determine the specific mechanisms of action, clinical efficacy, and in vivo safety of neem as a treatment for human pathogens of interest. Moreover, the various ongoing studies and the diverse properties of neem discussed herein may serve as a guide for the discovery of new antimicrobials that may exist in other herbal panaceas across the globe.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
6
|
Salvadora persica’s Biological Properties and Applications in Different Dental Specialties: A Narrative Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8667687. [PMID: 35652125 PMCID: PMC9148855 DOI: 10.1155/2022/8667687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Salvadora persica is a tree that belongs to the salvadorecea family. It is also known as Miswak, which is a popular natural toothbrush that was used centuries ago in oral hygiene by Muslims in all parts of the world, especially in the Middle East. Numerous researchers highlighted the biological activity of this plant in medicine, dentistry, and pharmacology. The purpose of this article is to narratively review the biological properties of Salvadora persica. In addition, it expresses variant applications of this herb in different dental specialties. Materials and Methods. The search of the literature was based on PubMed, MEDLINE, and Google Scholar using keywords: Salvadora persica, S. persica, Miswak, Dentistry, and Dental. All relevant articles were reviewed to check if they would fit within the scope of this review, and then, the information was extracted. Results. Multiple biological effects of S. persica have been reported including antibacterial, antiviral, antifungal, antibiofilm, antioxidant, and even antiulcer effects. Dental effects were discussed and presented. Conclusion. The wide biological range of Salvadora persica's effects is promising for dental and nondental fields and allows for an expanded clinical application that has otherwise not been discussed in the literature.
Collapse
|
7
|
Rajakumar S, Revanth MP, Kasi A, Sujitha P. Evaluating the antibacterial efficacy and minimal bactericidal concentration (MBC) of three different herbal extracts on recalcitrant endodontic pathogens - An in vitro study. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel) 2021; 10:981. [PMID: 34439031 PMCID: PMC8388863 DOI: 10.3390/antibiotics10080981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles has become a significant public health problem globally. The management of this issue using conventional antimicrobial preparations frequently results in an increase in pathogen resistance and a shortage of effective antimicrobials for future use against the same pathogens. In this review, we discuss the emergence of AMR and argue for the importance of addressing this issue by discovering novel synthetic or naturally occurring antibacterial compounds and providing insights into the application of various drug delivery approaches, delivered through numerous routes, in comparison with conventional delivery systems. In addition, we discuss the effectiveness of these delivery systems in different types of infectious diseases associated with antimicrobial resistance. Finally, future considerations in the development of highly effective antimicrobial delivery systems to combat antimicrobial resistance are presented.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Nana Juniarti Natsir Djide
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Qonita Kurnia Anjani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Institute of Pharmaceutical Science, King’s College of London, London SE1 9NH, UK
| | - Nur Rahma Rumata
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|