1
|
Singh G, Hossain MA, Al-Fahad D, Gupta V, Tandon S, Soni H, Narasimhaji CV, Jaremko M, Emwas AH, Anwar MJ, Azam F. An in-silico approach to target multiple proteins involved in anti-microbial resistance using natural compounds produced by wild mushrooms. Biochem Biophys Rep 2024; 40:101854. [PMID: 39498442 PMCID: PMC11532805 DOI: 10.1016/j.bbrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Bacterial resistance to antibiotics and the number of patients infected by multi-drug-resistant bacteria have increased significantly over the past decade. This study follows a computational approach to identify potential antibacterial compounds from wild mushrooms. Twenty-six known compounds produced by wild mushrooms were docked to assess their affinity with drug targets of antibiotics such as penicillin-binding protein-1a (PBP1a), DNA gyrase, and isoleucyl-tRNA synthetase (ILERS). Docking scores were further validated by multiple receptor conformer (MRC)-based docking studies. Based on the MRC-based docking results, eight molecules were shortlisted for ADMET analysis. Molecular dynamics (MD) simulations were further performed to evaluate the conformational stability of the ligand-protein complexes. Binding energies were computed by the gmx_MMPBSA method. The data were obtained in terms of root-mean square deviation, and root-mean square fluctuation justified the stability of Austrocortilutein A, Austrocortirubin, and Confluentin in complex with several proteins under physiological conditions. Among these, Austrocortilutein A displayed better binding affinity with PBP1a and ILERS when compared with their respective reference ligands. This study is preliminary and aims to help drive the search for compounds that have the capacity to overcome the anti-microbial resistance of prevalent bacteria, using natural compounds produced by wild mushrooms. Further experimental validation is required to justify the clinical use of the studied compounds.
Collapse
Affiliation(s)
- Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, 110016
| | - Md Alamgir Hossain
- Department of Pharmacy, Jagannath University, 9, 10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Iraq
| | - Vandana Gupta
- Departments of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | | | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51542, Saudi Arabia
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
2
|
Alghamdi MA, Azam F, Alam P. Deciphering Campylobacter jejuni DsbA1 protein dynamics in the presence of anti-virulent compounds: a multi-pronged computer-aided approach. J Biomol Struct Dyn 2024:1-17. [PMID: 38230450 DOI: 10.1080/07391102.2024.2302945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
The current study aims to evaluate Asinex library compounds against Campylobacter jejuni DsbA1 protein, a thiol disulfide oxidoreductase enzyme that plays a major role in the oxidative folding of bacterial virulence proteins, making it a promising anti-viral drug target. By employing several techniques of computer-aided drug design, BDC25697459, BDD33601083, and BDC30129064 were identified with binding energy scores of -8.8 kcal/mol, -8.8 kcal/mol, and -8.3 kcal/mol, respectively. However, the control molecule, tetraethylene glycol, exhibited a binding energy score of -7.0 kcal/mol. The control, BDD33601083, and BDC30129064 were unveiled to bind the same co-crystallized binding site (pocket 1), while BDC25697459 interacted with a new binding pocket (pocket 2) adjacent to the control binding region. The molecular dynamics simulation showed that complexes exhibit stable dynamics without significant global or residue-level fluctuations. The average RMSD values were in the range of 2.07 Å-2.45 Å. Similarly, mean RMSF was recorded between 1.30 and 1.42 Å. The C. jejuni DsbA1 was also observed as compact in the presence of the compounds, showing a mean RoG value in the range of 16.42 Å-16.55 Å. In terms of MM/PBSA binding energy, the BDC30129064 complex was ranked top with -44.88 ± 4.14 kcal/mol, whereas the positive control molecule exhibited -22.22 ± 3.33 kcal/mol. From a pharmacokinetic perspective, the compounds are suitable candidates for clinical trial investigation. Preliminary computational analysis of these virtual hits indicates that these compounds have a low potential for ADME and toxicity-associated liabilities. In summary, the compounds displayed a high affinity for the C. jejuni DsbA1 protein, indicating potential efficacy that requires further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mashael A Alghamdi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
3
|
Mittal L, Tonk RK, Awasthi A, Asthana S. Harnessing the druggability at orthosteric and allosteric sites of PD-1 for small molecule discovery by an integrated in silico pipeline. Comput Biol Chem 2023; 107:107965. [PMID: 37826990 DOI: 10.1016/j.compbiolchem.2023.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
The PD-1/PD-L1 interaction is a promising target for small molecule inhibitors in cancer immunotherapy, but targeting this interface has been challenging. While efforts have been made to identify compounds that target the orthosteric sites, no reports have explored the potential of small molecules to target the allosteric region of PD-1. Therefore, our study aims to establish a pipeline to identify small molecules that can effectively bind to either the orthosteric or allosteric pockets of PD-1. We categorized the PD-1 interface into two hot-spot zones (P-and N-zones) based on extensive analysis of its structural, dynamical, and energetic properties. These zones correspond to the orthosteric and allosteric PPI sites, respectively, targeted by monoclonal antibodies. We used a guided virtual screening workflow to identify hits from ∼7 million compounds library, which were then clustered based on structural similarity and assessed by interaction fingerprinting. The selective and diverse chemical representatives were subjected to MD simulations and binding energetics calculations to filter out false positives and identify actual binders. Binding poses metadynamics calculations confirmed the stability of the final hits in the pocket. This study emphasizes the need for an integrated pipeline that uses molecular dynamics simulations and binding energetics to identify potential binders for the dynamic PD-1/PD-L1 interface, due to the lack of small molecule co-crystals. Only a few potential binders were discovered from a large pool of molecules targeting both the allosteric and orthosteric zones. Our results suggest that the allosteric site has more potential than the orthosteric site for inhibitor design. The identified "computational hits" hold potential as starting points for in vitro evaluations followed by hit-to-lead optimization. Overall, this study represents an effort to establish a computational pipeline for exploring and enriching both the allosteric and orthosteric sites of PPI interfaces, "a tough but indispensable nut to crack".
Collapse
Affiliation(s)
- Lovika Mittal
- Computational Biophysics and CADD group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Delhi Pharmaceutical Science Research University (DPSRU), New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Science Research University (DPSRU), New Delhi, India
| | - Amit Awasthi
- Computational Biophysics and CADD group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Shailendra Asthana
- Computational Biophysics and CADD group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
4
|
Choudhari S, Patil SK, Rathod S. Identification of hits as anti-obesity agents against human pancreatic lipase via docking, drug-likeness, in-silico ADME(T), pharmacophore, DFT, molecular dynamics, and MM/PB(GB)SA analysis. J Biomol Struct Dyn 2023; 42:10688-10710. [PMID: 37735906 DOI: 10.1080/07391102.2023.2258407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Obesity, characterized by excessive fat accumulation, is a major health concern. Inhibition of human pancreatic lipase, an enzyme involved in fat digestion, offers a potential strategy for weight loss and obesity treatment. This study aimed to identify polyphenols capable of forming stable complexes with human pancreatic lipase to block its activity. Molecular docking, density functional theory (DFT), molecular dynamics (MD) simulations, and MMPBGBSA calculations were employed to evaluate ligand binding, stability, and energy profiles. Pharmacophore modeling was also performed to identify key structural features for effective inhibition. Virtual screening identified ZINC000015120539, ZINC000000899200, ZINC000001531702, and ZINC000013340267 as potential candidates, exhibiting favorable binding and stable interactions over 100 ns MD simulations. These findings provide insights into the inhibitory potential of selected polyphenols on human pancreatic lipase and support further experimental investigations for obesity treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sujata Choudhari
- Department of Pharmaceutical Chemistry, Sarojini College of Pharmacy, Kolhapur, MS, India
- Department of Pharmaceutics, Ashokrao Mane College of Pharmacy, Peth Vadgaon, MS, India
| | - Sachin Kumar Patil
- Department of Pharmaceutics, Ashokrao Mane College of Pharmacy, Peth Vadgaon, MS, India
| | - Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| |
Collapse
|
5
|
Rathod S, Chavan P, Mahuli D, Rochlani S, Shinde S, Pawar S, Choudhari P, Dhavale R, Mudalkar P, Tamboli F. Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. J Mol Model 2023; 29:113. [PMID: 36971900 DOI: 10.1007/s00894-023-05521-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
Cases of drug-resistant tuberculosis (TB) have increased worldwide in the last few years, and it is a major threat to global TB control strategies and the human population. Mycobacterium tuberculosis is a common causative agent responsible for increasing cases of TB and as reported by WHO, approximately, 1.5 million death occurred from TB in 2020. Identification of new therapies against drug-resistant TB is an urgent need to be considered primarily. The current investigation aims to find the potential biogenic chalcone against the potential targets of drug-resistant TB via in silico approach. The ligand library of biogenic chalcones was screened against DprE1. Results of molecular docking and in silico ADMET prediction revealed that ZINC000005158606 has lead-like properties against the targeted protein. Pharmacophore modeling was done to identify the pharmacophoric features and their geometric distance present in ZINC000005158606. The binding stability study performed using molecular dynamics (MD) simulation of the DprE1-ZINC000005158606 complex revealed the conformational stability of the complex system over 100 ns with minimum deviation. Further, the in silico anti-TB sensitivity of ZINC000005158606 was found to be higher as compared to the standards against Mycobacterium tuberculosis. The overall in silico investigation indicated the potential of identified hit to act as a lead molecule against Mycobacterium tuberculosis.
Collapse
|
6
|
Alnasser SM, Azam F, Alqarni MH, Aodah AH, Hashmi S, Kamal M, Meshal A, Alam A. Development and Evaluation of Novel Encapsulated Isoeugenol-Liposomal Gel Carrier System for Methicillin-Resistant Staphylococcus aureus. Gels 2023; 9:gels9030228. [PMID: 36975677 PMCID: PMC10048158 DOI: 10.3390/gels9030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In recent years, methicillin-resistant Staphylococcus aureus (MRSA) bacteria have seriously threatened the health and safety of the world’s population. This challenge demands the development of alternative therapies based on plant origin. This molecular docking study ascertained the orientation and intermolecular interactions of isoeugenol within penicillin-binding protein 2a. In this present work, isoeugenol as an anti-MRSA therapy was selected by encapsulating it into a liposomal carrier system. After encapsulation into the liposomal carrier, it was evaluated for encapsulation efficiency (%), particle size, zeta potential, and morphology. The percentage entrapment efficiency (% EE) was observed to be 57.8 ± 2.89% with a particle size of 143.31 ± 7.165 nm, a zeta potential of (−)25 mV, and morphology was found to be spherical and smooth. After this evaluation, it was incorporated into a 0.5% Carbopol gel for a smooth and uniform distribution on the skin. Notably, the isoeugenol-liposomal gel was smooth on the surface with a pH of 6.4, suitable viscosity, and spreadability. Interestingly, the developed isoeugenol-liposomal gel was safe for human use, with more than 80% cell viability. The in vitro drug release study shows promising results with 75.95 ± 3.79% of drug release after 24 h. The minimum inhibitory concentration (MIC) was 8.236 µg/mL. Based on this, it can be concluded that encapsulating isoeugenol into the liposomal gel is a potential carrier for MRSA treatment.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sana Hashmi
- Department of Pharmaceutical Sciences, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al-Batin 39911, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Lingwan M, Shagun S, Pahwa F, Kumar A, Verma DK, Pant Y, Kamatam LVK, Kumari B, Nanda RK, Sunil S, Masakapalli SK. Phytochemical rich Himalayan Rhododendron arboreum petals inhibit SARS-CoV-2 infection in vitro. J Biomol Struct Dyn 2023; 41:1403-1413. [PMID: 34961411 DOI: 10.1080/07391102.2021.2021287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phytochemicals with potential to competitively bind to the host receptors or inhibit SARS-CoV-2 replication, may prove to be useful as adjunct therapeutics for COVID-19. We profiled and investigated the phytochemicals of Rhododendron arboreum petals sourced from Himalayan flora, undertook in vitro studies and found it as a promising candidate against SARS-CoV-2. The phytochemicals were reported in various scientific investigations to act against a range of virus in vitro and in vivo, which prompted us to test against SARS-CoV-2. In vitro assays of R. arboreum petals hot aqueous extract confirmed dose dependent reduction in SARS-CoV-2 viral load in infected Vero E6 cells (80% inhibition at 1 mg/ml; IC50 = 173 µg/ml) and phytochemicals profiled were subjected to molecular docking studies against SARS CoV-2 target proteins. The molecules 5-O-Feruloyl-quinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, Epicatechin and Catechin showed promising binding affinity with SARS-CoV-2 Main protease (MPro; PDB ID: 6LU7; responsible for viral replication) and Human Angiotensin Converting Enzyme-2 (ACE2; PDB ID: 1R4L; mediate viral entry in the host). Molecular dynamics (MD) simulation of 5-O-Feruloyl-quinic acid, an abundant molecule in the extract complexed with the target proteins showed stable interactions. Taken together, the phytochemical profiling, in silico analysis and in vitro anti-viral assay revealed that the petals extract act upon MPro and may be inhibiting SARS-CoV-2 replication. This is the first report highlighting R. arboreum petals as a reservoir of antiviral phytochemicals with potential anti-SARS-CoV-2 activity using an in vitro system.
Collapse
Affiliation(s)
- Maneesh Lingwan
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Shagun Shagun
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Falak Pahwa
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ankit Kumar
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dileep Kumar Verma
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yogesh Pant
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Lingarao V K Kamatam
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Bandna Kumari
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Ranjan Kumar Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shyam Kumar Masakapalli
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| |
Collapse
|
8
|
Gopikrishnan M, George Priya Doss C. Molecular docking and dynamic approach to screen the drug candidate against the Imipenem-resistant CarO porin in Acinetobacter baumannii. Microb Pathog 2023; 177:106049. [PMID: 36858184 DOI: 10.1016/j.micpath.2023.106049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
The multidrug-resistant Acinetobacter baumannii is an emerging nosocomial pathogen in the healthcare sector. Intrinsic resistance in A. baumannii is a significant problem framing a perfect treatment regimen. Also, this organism showed more resistance towards the carbapenem antibiotics, especially for imipenem and meropenem. The development of carbapenem-resistant Acinetobacter baumannii is mainly due to the alteration or loss of the porin region in the outer membrane. The most well-known porin in Acinetobacter baumannii is CarO (carbapenem-associated outer membrane protein). The CarO protein, which functions as a porin channel for carbapenem inflow, may contribute to carbapenem resistance. The current study identifies a potent drug candidate with a better binding affinity to the carbapenem-resistant outer membrane protein. We investigated the specificity of carbapenems such as imipenem, meropenem, ertapenem, biapenem, doripenem, and fluoroquinolone drugs such as sitafloxacin against the imipenem-resistant CarO protein was demonstrated using the computational approaches molecular docking and dynamic simulation for 50 ns. As a result, the high to low enzyme-ligand complex's binding affinity exhibited a greater binding affinity for ertapenem -7.76 kcal·mol-1 and sitafloxacin -7.75 kcal·mol-1 than biapenem, doripenem, meropenem, and imipenem. The molecular dynamic simulation and the MMPBSA analysis depicted ertapenem -55.431±25.908 kJ/mol and sitafloxacin -47.154 ± 11.052 kJ/mol with better binding affinity and more stability against the imipenem resistant CarO protein when it compared to other antibiotics.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Formulation, In Vitro and In Silico Evaluations of Anise ( Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects. Gels 2023; 9:gels9020111. [PMID: 36826281 PMCID: PMC9957046 DOI: 10.3390/gels9020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the past decade, researchers have made several efforts to develop gel-based formulations that provide an alternative to traditional hydrogels and emulgel. Due to its excellent antibacterial properties, anise, the main constituent of Pimpinella anisum L., widely used in pharmaceuticals, was selected as the active ingredient in this study. Since many bacteria have developed considerable antibiotic resistance, this research aimed to develop an herbal emulgel for treating skin infections caused by bacteria. Given these obstacles, we developed and evaluated a new, cost-effective topical emulgel solution containing anise essential oil against Escherichia coli (E. coli). Anise-based emulgels, potential drug delivery platforms, have been evaluated for various parameters, including physical properties, viscosity, pH, rheology, encapsulation efficiency, and in vitro release research. The AEOs emulgel demonstrated remarkable colloidal stability, with a zeta potential of 29 mV, a size of 149.05 nm, and considerable polydispersity. The efficacy of anise-loaded emulgels as antibacterial formulations was evaluated in vitro. E. coli was used as a model microbial organism for the antibacterial study. Human keratinocytes (HaCaT) were used to examine the biocompatibility of the emulgel. Molecular docking revealed that the essential oil components of Pimpinella anisum L. possess a high affinity for the bacterial adhesin protein FimH of E. coli. These findings indicate that the developed AEOs have the potential to be analyzed using E. coli as a model organism.
Collapse
|
10
|
Song L, Hu Y, Yang Y, Xu L. Clinical effect of teicoplanin on pulmonary infection after chemotherapy for hematologic malignancies. Am J Transl Res 2022; 14:7467-7476. [PMID: 36398253 PMCID: PMC9641445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To explore the effects of teicoplanin on pulmonary infection after chemotherapy for hematologic malignancies. METHODS In the present retrospective study, 64 patients with pulmonary infection, who underwent chemotherapy for hematologic malignancies at Anhui No.2 Provincial People's Hospital from September 2019 to September 2021, were selected as an infection group, and their clinical data were retrospectively analyzed. Meanwhile, 30 patients without pulmonary infection after chemotherapy for hematologic malignancies were selected as a reference group. Patients in the infection group were subdivided into control and treatment groups (n=32 each) according to the different therapeutic regimens. The control group was given routine treatment with norvancomycin, while the treatment group was given teicoplanin combined with norvancomycin. The therapeutic effects, bacterial clearance rate, recovery time, clinical pulmonary infection score (CPIS), inflammatory factors and adverse reactions were compared between the two groups. The risk factors of pulmonary infection after treatment for hematologic malignancies were analyzed. RESULTS The treatment group exhibited higher total therapeutic effect and higher bacterial clearance rate than the control group (P < 0.05). The treatment group had shorter time to the recovery of white blood cell (WBC) count, time to the disappearance of cough and sputum, time to return to normal body temperature, and length of stay than the control group (P < 0.05). One month post-treatment, the levels of C-reactive protein, tumor necrosis factor-α, interleukin-1β, and procalcitonin in the treatment group were lower than those in the control group (P < 0.05). The CPISs at 7, 14, and 30 days after treatment were lower in the treatment group than those in the control group (P < 0.05). Compared with the reference group, the infection group had higher rate of diabetes, higher rate of glucocorticoid use, longer time of agranulocytosis, longer hospital stay and lower WBC count (P < 0.05). Multivariate Logistic regression analysis showed that agranulocytosis time, diabetes mellitus and glucocorticoid use were independent risk factors for pulmonary infection after treatment for hematologic malignancies (P < 0.05), and that higher WBC was a protective factor (P < 0.05). CONCLUSION Teicoplanin in the treatment of pulmonary infection after chemotherapy for hematologic malignancies can improve the therapeutic effects, effectively clear bacteria, shorten the recovery time and reduce the inflammatory response.
Collapse
Affiliation(s)
- Ling Song
- Department of Hematology, Anhui No.2 Provincial People's Hospital Hefei, Anhui, China
| | - Yue Hu
- Department of Hematology, Anhui No.2 Provincial People's Hospital Hefei, Anhui, China
| | - Youwei Yang
- Department of Hematology, Anhui No.2 Provincial People's Hospital Hefei, Anhui, China
| | - Li Xu
- Department of Hematology, Anhui No.2 Provincial People's Hospital Hefei, Anhui, China
| |
Collapse
|
11
|
Alici H, Tahtaci H, Demir K. Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 -associated main enzymes. Comput Biol Chem 2022; 98:107657. [PMID: 35259661 PMCID: PMC8881819 DOI: 10.1016/j.compbiolchem.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
Abstract
The novel coronavirus disease (COVID-19) is a highly contagious disease caused by the SARS-CoV-2 virus, leading severe acute respiratory syndrome in patients. Although various antiviral drugs and their combinations have been tried so far against SARS-CoV-2 and they have shown some effectiveness, there is still a need for safe and cost-effective binding inhibitors in the fight against COVID-19. Therefore, phytochemicals in nature can be a quick solution due to their wide therapeutic spectrum and strong antiviral, anti-inflammatory, and antioxidant properties. In this context, the low toxicity, and high pharmacokinetic properties of curcumin, which is a natural phytochemical, as well as the easy synthesizing of its derivatives reveal the need for investigation of its various derivatives as inhibitors against coronaviruses. The present study focused on curcumin derivatives with reliable ADME profile and high molecular binding potency to different SARS-CoV-2 target enzymes (3CLPro, PLpro, NSP7/8/12, NSP7/8/12 +RNA, NSP15, NSP16, Spike, Spike+ACE). In the molecular docking studies, the best binding scores for the 22 proposed curcumin derivatives were obtained for the PLpro protein. Furthermore, MD simulations were performed for high-affinity ligand-PLpro protein complexes and subsequently, Lys157, Glu161, Asp164, Arg166, Glu167, Met208, Pro247, Pro248, Tyr264, Tyr273 and Asp302 residues of PLpro was determined to play key role for ligand binding by Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis. The results of the study promise that the proposed curcumin derivatives can be potent inhibitors against SARS-CoV-2 and be converted into pharmaceutical drugs. It is also expected that the findings may provide guiding insights to future design studies for synthesizing different antiviral derivatives of phytochemicals.
Collapse
Affiliation(s)
- Hakan Alici
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey.
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabuk University, 78050 Karabuk, Turkey
| | - Kadir Demir
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey
| |
Collapse
|
12
|
Toward the Discovery of a Novel Class of Leads for High Altitude Disorders by Virtual Screening and Molecular Dynamics Approaches Targeting Carbonic Anhydrase. Int J Mol Sci 2022; 23:ijms23095054. [PMID: 35563445 PMCID: PMC9104310 DOI: 10.3390/ijms23095054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023] Open
Abstract
For decades, carbonic anhydrase (CA) inhibitors, most notably the acetazolamide-bearing 1,3,4-thiadiazole moiety, have been exploited at high altitudes to alleviate acute mountain sickness, a syndrome of symptomatic sensitivity to the altitude characterized by nausea, lethargy, headache, anorexia, and inadequate sleep. Therefore, inhibition of CA may be a promising therapeutic strategy for high-altitude disorders. In this study, co-crystallized inhibitors with 1,3,4-thiadiazole, 1,3-benzothiazole, and 1,2,5-oxadiazole scaffolds were employed for pharmacophore-based virtual screening of the ZINC database, followed by molecular docking and molecular dynamics simulation studies against CA to find possible ligands that may emerge as promising inhibitors. Compared to the co-crystal ligands of PDB-1YDB, 6BCC, and 6IC2, ZINC12336992, ZINC24751284, and ZINC58324738 had the highest docking scores of -9.0, -9.0, and -8.9 kcal/mol, respectively. A molecular dynamics (MD) simulation analysis of 100 ns was conducted to verify the interactions of the top-scoring molecules with CA. The system's backbone revealed minor fluctuations, indicating that the CA-ligand complex was stable during the simulation period. Simulated trajectories were used for the MM-GBSA analysis, showing free binding energies of -16.00 ± 0.19, -21.04 ± 0.17, and -19.70 ± 0.18 kcal/mol, respectively. In addition, study of the frontier molecular orbitals of these compounds by DFT-based optimization at the level of B3LYP and the 6-311G(d,p) basis set showed negative values of the HOMO and LUMO, indicating that the ligands are energetically stable, which is essential for forming a stable ligand-protein complex. These molecules may prove to be a promising therapy for high-altitude disorders, necessitating further investigations.
Collapse
|
13
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
14
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA, Almatroudi AA, AlSuhaymi N, Khan MA. Experimental and Theoretical Insights on Chemopreventive Effect of the Liposomal Thymoquinone Against Benzo[a]pyrene-Induced Lung Cancer in Swiss Albino Mice. J Inflamm Res 2022; 15:2263-2280. [PMID: 35422652 PMCID: PMC9005154 DOI: 10.2147/jir.s358632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Thymoquinone (TQ), a phytoconstituent of Nigella sativa seeds, has been studied extensively in various cancer models. However, TQ’s limited water solubility restricts its therapeutic applicability. Our work aims to prepare the novel formulation of TQ and assess its chemopreventive potential in chemically induced lung cancer animal model. Methods The polyethylene glycol coated DOPE/CHEMS incorporating TQ-loaded pH-sensitive liposomes (TQPSL) were prepared and characterized. Mice were exposed to benzo[a]pyrene (BaP) thrice a week for 4 weeks to induce lung cancer. TQPSL was administered three times a week for 21 weeks, starting 2 weeks before the first dose of BaP. Results The prepared TQPSL revealed 85% entrapment efficiency with 128 nm size and −19.5 mv ζ-potential showing high stability of the formulation. The pretreatment of TQPSL showed the recovery in BaP-modulated relative organ weight of lungs, cancer marker enzymes, and antioxidant enzymes in the serum. The histopathological analysis of the tissues showed that TQPSL protected the malignancy in the lungs. The flow cytometry data revealed the induction of apoptosis and decreased intracellular ROS by TQPSL. Molecular docking was performed to predict the TQ’s affinity for eight possible anticancer drug targets linked to lung cancer etiology. The data assisted to identify the serine/threonine-protein kinase BRAF as the most suitable target of TQ with binding energy −6.8 kcal/mol. Conclusion The current findings demonstrated the potential of TQPSL and its possible therapeutic targets of lung cancer. To our knowledge, this is the first research to outline the development of TQ formulation against lung cancer considering its low solubility as well as pulmonary delivery challenges.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
- Correspondence: Arif Khan, Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia, Tel +966 590038460, Fax +966 63801628, Email
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammad A Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mugahid A Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid, Sudan
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad A Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah, 21912, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
15
|
Ajaz K. Kirmani S, Ali P. CoM-polynomial and topological co-indices of Hyaluronic acid conjugates. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Alrumaihi F, Khan MA, Babiker AY, Alsaweed M, Azam F, Allemailem KS, Almatroudi AA, Ahamad SR, Alsugoor MH, Alharbi KN, Almansour NM, Khan A. Lipid-Based Nanoparticle Formulation of Diallyl Trisulfide Chemosensitizes the Growth Inhibitory Activity of Doxorubicin in Colorectal Cancer Model: A Novel In Vitro, In Vivo and In Silico Analysis. Molecules 2022; 27:molecules27072192. [PMID: 35408590 PMCID: PMC9000458 DOI: 10.3390/molecules27072192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Garlic’s main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of −4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Ahmad A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia;
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-590038460; Fax: +966-63801628
| |
Collapse
|
17
|
The Effect of Liposomal Diallyl Disulfide and Oxaliplatin on Proliferation of Colorectal Cancer Cells: In Vitro and In Silico Analysis. Pharmaceutics 2022; 14:pharmaceutics14020236. [PMID: 35213970 PMCID: PMC8877238 DOI: 10.3390/pharmaceutics14020236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Diallyl disulfide (DADS) is one of the main bioactive organosulfur compounds of garlic, and its potential against various cancer models has been demonstrated. The poor solubility of DADS in aqueous solutions limits its uses in clinical application. The present study aimed to develop a novel formulation of DADS to increase its bioavailability and therapeutic potential and evaluate its role in combination with oxaliplatin (OXA) in the colorectal cancer system. We prepared and characterized PEGylated, DADS (DCPDD), and OXA (DCPDO) liposomes. The anticancer potential of these formulations was then evaluated in HCT116 and RKO colon cancer cells by different cellular assays. Further, a molecular docking-based computational analysis was conducted to determine the probable binding interactions of DADS and OXA. The results revealed the size of the DCPDD and DCPDO to be 114.46 nm (95% EE) and 149.45 nm (54% EE), respectively. They increased the sensitivity of the cells and reduced the IC50 several folds, while the combinations of them showed a synergistic effect and induced apoptosis by 55% in the cells. The molecular docking data projected several possible targets of DADS and OXA that could be evaluated more precisely by these novel formulations in detail. This study will direct the usage of DCPDD to augment the therapeutic potential of DCPDO against colon cancer in clinical settings.
Collapse
|
18
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA, Alwashmi ASS, Almatroudi AA, Alsugoor MH, Khan MA. Safety, Stability, and Therapeutic Efficacy of Long-Circulating TQ-Incorporated Liposomes: Implication in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14010153. [PMID: 35057049 PMCID: PMC8778344 DOI: 10.3390/pharmaceutics14010153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone (TQ), which is one of the main bioactive constituents of Nigella sativa seeds, has demonstrated its potential against various cancer models. The poor solubility of TQ in aqueous solution limits its uses in clinical application. The present study aimed to develop a novel formulation of TQ to increase its bioavailability and therapeutic potential with minimal toxicity. Polyethylene glycol (PEG)-coated DSPC/cholesterol comprising TQ liposomes (PEG-Lip-TQ) were prepared and characterized on various aspects. A computational investigation using molecular docking was used to assess the possible binding interactions of TQ with 12 prospective anticancer drug targets. The in vitro anticancer activity was assessed in A549 and H460 lung cancer cells in a time- and dose-dependent manner, while the oral acute toxicity assay was evaluated in silico as well as in vivo in mice. TQ docked to the Hsp90 target had the lowest binding energy of −6.05 kcal/mol, whereas caspase 3 was recognized as the least likely target for TQ with a binding energy of −1.19 kcal/mol. The results showed 96% EE with 120 nm size, and −10.85 mv, ζ-potential of PEG-Lip-TQ, respectively. The cell cytotoxicity data demonstrated high sensitivity of PEG-Lip-TQ and a several fold decrease in the IC50 while comparing free TQ. The cell cycle analysis showed changes in the distribution of cells with doses. The in vivo data revealed an ~9-fold increase in the LD50 of PEG-Lip-TQ on free TQ as an estimated 775 and 89.5 mg/kg b.w, respectively. This study indicates that the pharmacological and efficacy profile of PEG-lip-TQ is superior to free TQ, which will pave the way for an exploration of the effect of TQ formulation in the treatment of lung cancer in clinical settings.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-59-003-8460; Fax: +966-63-801628
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Mohammad A. Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mugahid A. Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid 157, Sudan
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Ahmed A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, Al Qunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Masood A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
19
|
Anwar M, Azam F, Alenezi S, Mahmood D, Imam F, Alharbi K. Nigella sativa oil alleviates doxorubicin-induced cardiomyopathy and neurobehavioral changes in mice: In vivo and in-silico study. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
|
21
|
Azam F, Eid EEM, Almutairi A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J Mol Struct 2021; 1246:131124. [PMID: 34305175 PMCID: PMC8286173 DOI: 10.1016/j.molstruc.2021.131124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
First emerged in late December 2019, the outbreak of novel severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) pandemic has instigated public-health emergency around the globe. Till date there is no specific therapeutic agent for this disease and hence, the world is craving to identify potential antiviral agents against SARS-CoV-2. The main protease (MPro) is considered as an attractive drug target for rational drug design against SARS-CoV-2 as it is known to play a crucial role in the viral replication and transcription. Teicoplanin is a glycopeptide class of antibiotic which is regularly used for treating Gram-positive bacterial infections, has shown potential therapeutic efficacy against SARS-CoV-2 in vitro. Therefore, in this study, a mechanistic insight of intermolecular interactions between teicoplanin and SARS-CoV-2 MPro has been scrutinized by molecular docking. Both monomeric and dimeric forms of MPro was used in docking involving blind as well as defined binding site based on the known inhibitor. Binding energies of teicoplanin-MPro complexes were estimated by Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) computations from docking and simulated trajectories. The dynamic and thermodynamics constraints of docked drug in complex with target proteins under specific physiological conditions was ascertained by all-atom molecular dynamics simulation of 100 ns trajectory. Root mean square deviation and fluctuation of carbon α chain justified the stability of the bound complex in biological environments. The outcomes of current study are supposed to be fruitful in rational design of antiviral drugs against SARS-CoV-2.
Collapse
|
22
|
Mittal L, Tonk RK, Awasthi A, Asthana S. Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach. Arch Biochem Biophys 2021; 713:109059. [PMID: 34673001 DOI: 10.1016/j.abb.2021.109059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022]
Abstract
Approved mAbs that block the protein-protein interaction (PPI) interface of the PD-1/PD-L1 immune checkpoint axis have led to significant improvements in cancer treatment. Despite having drawbacks of mAbs only few a compounds are reported till date against this axis. Inhibiting PPIs using small molecules has emerged as a significant therapeutic opportunity, demanding for the identification of drug-like molecules at an accelerated pace under the hit-to-lead campaigns. Due to the PD-L1's cross-talk with PD-1/CD80 and its overexpression on cancer cells, as well as the availability of its crystal structures with small molecules, it is an enticing therapeutic target for structure-assisted small molecule design. Furthermore, the selection of chemical databases enriched with focused designing for PPI interfaces is crucial. Therefore, in this study we have utilized the Asinex signature library for structure-assisted virtual screening to find the potential PD-L1 inhibitors by targeting the cryptic PD-L1 interface, followed by induced fit docking for pose refinements in the pocket. The obtained hits were then subjected to interaction fingerprinting and ligand-based drug-likeness investigations in order to evaluate and analyze their drug-like qualities (ADME). Twelve compounds qualified for molecular dynamics simulations, followed by thermodynamic calculations for evaluation of their stability and energetics inside the pocket. Two novel compounds with different chemical moieties have been identified that are consistent throughout the simulation, mimicking the interactions and binding energies with BMS-1166. These compounds appear as potential therapeutic candidates to be explored experimentally, thereby paving the way for the development of novel leads as immunomodulators.
Collapse
Affiliation(s)
- Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India; Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|