1
|
Selim MI, El-Banna T, Sonbol F, Negm WA, Elekhnawy E. Unveiling the potential of spirulina algal extract as promising antibacterial and antibiofilm agent against carbapenem-resistant Klebsiella pneumoniae: in vitro and in vivo study. Microb Cell Fact 2025; 24:7. [PMID: 39755644 DOI: 10.1186/s12934-024-02619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae. In this study, thirty carbapenem-resistant K. pneumoniae isolates were collected, identified, and then screened for their susceptibility to several antibiotics and carbapenemase production genes using PCR. Both blaKPC and blaOXA-48 genes were the most predominant detected carbapenemase genes in the tested isolates. The phytochemical profiling of A. maxima algal extract was conducted using LC-MS/MS in a positive mode technique. The minimum inhibitory concentrations (MIC) of the algal extract ranged from 500 to 1000 µg/mL. The algal extract also resulted in decreasing the membrane integrity and distortion in the bacterial cells as revealed by scanning electron microscope. The bioactive compounds that were responsible for the antibacterial action were fatty acids, including PUFAs, polysaccharides, glycosides, peptides, flavonoids, phycocyanin, minerals, essential amino acids, and vitamins. Moreover, A. maxima algal extract revealed an antibiofilm activity by crystal violet assay and qRT-PCR. A murine pneumonia model was employed for the in vivo assessment of the antibacterial action of the algal extract. A. maxima showed a promising antibacterial action which was comparable to the action of colistin (standard drug). This was manifested by improving the pulmonary architecture, decreasing the inflammatory cell infiltration, and fibrosis after staining with hematoxylin and eosin and Masson's trichrome stain. Using immunohistochemical investigations, the percentage of the immunoreactive cells significantly decreased after using monoclonal antibodies of the tumor necrosis factor-alpha and interleukin six. So, A. maxima may be considered a new candidate for the development of new antibacterial medications.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
Alotaibi B, Elekhnawy E, El-Masry TA, Saleh A, Alosaimi ME, Alotaibi KN, Negm WA. Antibacterial potential of Euphorbia canariensis against Pseudomonas aeruginosa bacteria causing respiratory tract infections. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:261-269. [PMID: 38696143 DOI: 10.1080/21691401.2024.2345891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/14/2024] [Indexed: 05/14/2024]
Abstract
The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of Euphorbia canariensis ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against Pseudomonas aeruginosa clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and pslD) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied in vivo using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta
| |
Collapse
|
3
|
Abdelaziz AA, Abo-Kamar AM, Ashour AE, Shaldam MA, Elekhnawy E. Unveiling the antibacterial action of ambroxol against Staphylococcus aureus bacteria: in vitro, in vivo, and in silico investigation. BMC Microbiol 2024; 24:507. [PMID: 39614163 DOI: 10.1186/s12866-024-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
It is critical to find novel therapeutic approaches owing to the dissemination of multidrug resistance (MDR) in pathogenic bacteria, particularly Staphylococcus aureus. FDA-drug repurposing is an important therapeutic tactic to fight MDR bacteria. Here, we inspected the antibacterial activity of ambroxol against clinical MDR S. aureus isolates. Using the broth microdilution method, ambroxol revealed minimum inhibitory concentrations (MICs) of 0.75 to 1.5 mg/mL. Also, it revealed antibiofilm action on 42.17% of the isolates by crystal violet assay. A scanning electron microscope was employed to study the antibiofilm action of ambroxol. It revealed that the association between the cells was interrupted by ambroxol, and the biofilm construction was devastated. Moreover, qRT-PCR was utilized to elucidate the consequence of ambroxol on the gene expression of efflux and biofilm. Remarkably, ambroxol has downregulated the expression of cna, fnb A, ica, nor A, nor B genes. Ambroxol's in vivo antibacterial action was investigated using S. aureus infected burn infection. Interestingly, ambroxol has improved the histological features of the skin tissues, significantly diminished the bacterial burden, and increased the wound healing percentage. Also, it revealed a significant reduction in the immunohistochemical staining of tumor necrosis factor-alpha. Finally, the in silico investigations were performed to elucidate the potential of ambroxol on five possible targets of S. aureus. Ambroxol showed good affinities on the five investigated targets in S. aureus, with CrtM being the highest, proposing its probable role in the mechanisms for ambroxol's action on S. aureus.
Collapse
Affiliation(s)
- Ahmed A Abdelaziz
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amal M Abo-Kamar
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Alaa E Ashour
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Zhao W, Ji L, Li J, Liu D, Yan C, Zhang C, Wang X, Liu Y, Zheng S. Mesaconate from Bacillus subtilis R0179 Supernatant Attenuates Periodontitis by Inhibiting Porphyromonas gingivalis in Mice. J Periodontal Res 2024. [PMID: 39560450 DOI: 10.1111/jre.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
AIMS This research sought to assess the efficacy of Bacillus subtilis (B. subtilis) R0179 and explore potential metabolites in mitigating experimental periodontitis in mice induced by Porphyromonas gingivalis (P. gingivalis) ATCC 33277. METHODS B. subtilis R0179 was administered to 8-week-old male C57BL/6J mice with periodontitis. Oral load of P. gingivalis ATCC 33277 and periodontal tissue loss were quantified. The cell-free supernatant (CFS) was separated to assess its anti-P. gingivalis effect. Proteomic and metabolomic analyses identified potential antibacterial components in the CFS, further evaluated for anti-P. gingivalis effects. RESULTS B. subtilis R0179 significantly reduced P. gingivalis ATCC 33277 levels and mitigated periodontal tissue loss in mice. The CFS, rather than inactivated B. subtilis R0179 cells, exhibited antibacterial activity. Proteomic and metabolomic analyses identified mesaconate and citraconate as key antibacterial agents. Disk diffusion assays confirmed the efficacy of mesaconate against P. gingivalis, while citraconate had no effect. Mesaconate showed a dose-dependent reduction in P. gingivalis ATCC 33277 population and periodontal tissue loss in mice. CONCLUSION These findings highlight B. subtilis R0179 and its metabolite mesaconate as promising candidates for therapeutic development against periodontitis by inhibiting P. gingivalis ATCC 33277 effectively.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Lingli Ji
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Jie Li
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Changqing Yan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| |
Collapse
|
5
|
Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep 2024; 51:505. [PMID: 38619680 PMCID: PMC11018693 DOI: 10.1007/s11033-024-09398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Recent and continuing advances in gut microbiome research have pointed out the role of the gut microbiota as an unexplored source of potentially beneficial probiotic microbes. Along the lines of these advances, both public awareness and acceptance of probiotics are increasing. That's why; academic and industrial research is dedicated to identifying and investigating new microbial strains for the development of next-generation probiotics (NGPs). At this time, there is a growing interest in NGPs as biotherapeutics that alter the gut microbiome and affect various diseases development. In this work, we have focused on some emergent and promising NGPs, specifically Eubacterium hallii, Faecalibacterium prausnitzii, Roseburia spp., Akkermansia muciniphila, and Bacteroides fragilis, as their presence in the gut can have an impact on the development of various diseases. Emerging studies point out the beneficial roles of these NGPs and open up novel promising therapeutic options. Interestingly, these NGPs were found to enhance gastrointestinal immunity, enhance immunotherapy efficacy in cancer patients, retain the intestinal barrier integrity, generate valuable metabolites, especially short-chain fatty acids, and decrease complications of chemotherapy and radiotherapy. Although many of these NGPs are considered promising for the prevention and treatment of several chronic diseases, research on humans is still lacking. Therefore, approval of these microbes from regulatory agencies is rare. Besides, some issues limit their wide use in the market, such as suitable methods for the culture and storage of these oxygen-sensitive microbes. The present review goes over the main points related to NGPs and gives a viewpoint on the key issues that still hinder their wide application. Furthermore, we have focused on the advancement in NGPs and human healthiness investigations by clarifying the limitations of traditional probiotic microorganisms, discussing the characteristics of emerging NGPs and defining their role in the management of certain ailments. Future research should emphasize the isolation, mechanisms of action of these probiotics, safety, and clinical efficacy in humans.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Ali NH, Alhamdan NA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Irisin/PGC-1α/FNDC5 pathway in Parkinson's disease: truth under the throes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1985-1995. [PMID: 37819389 DOI: 10.1007/s00210-023-02726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is considered one of the most common neurodegenerative brain diseases which involves the deposition of α-synuclein. Irisin hormone, a newly discovered adipokine, has a valuable role in diverse neurodegenerative diseases. Therefore, this review aims to elucidate the possible role of the irisin hormone in PD neuropathology. Irisin hormone has a neuroprotective effect against the development and progression of various neurodegenerative disorders by increasing the expression of brain-derived neurotrophic factor (BDNF). Irisin hormone has anti-inflammatory, anti-apoptotic, and anti-oxidative impacts, thereby reducing the expression of the pro-inflammatory cytokines and the progression of neuroinflammation. Irisin-induced PGC-1α could potentially prevent α-synuclein-induced dopaminergic injury, neuroinflammation, and neurotoxicity in PD. Inhibition of NF-κB by irisin improves PGC-1α and FNDC5 signaling pathway with subsequent attenuation of PD neuropathology. Therefore, the irisin/PGC-1α/FNDC5 pathway could prevent dopaminergic neuronal injury. In conclusion, the irisin hormone has a neuroprotective effect through its anti-inflammatory and antioxidant impacts with the amelioration of brain BDNF levels. Further preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nourah Ahmad Alhamdan
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
7
|
Vang D, Moreira-Souza ACA, Zusman N, Moncada G, Matshik Dakafay H, Asadi H, Ojcius DM, Almeida-da-Silva CLC. Frankincense ( Boswellia serrata) Extract Effects on Growth and Biofilm Formation of Porphyromonas gingivalis, and Its Intracellular Infection in Human Gingival Epithelial Cells. Curr Issues Mol Biol 2024; 46:2991-3004. [PMID: 38666917 PMCID: PMC11049348 DOI: 10.3390/cimb46040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.
Collapse
Affiliation(s)
- David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Aline Cristina Abreu Moreira-Souza
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Nicholas Zusman
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - German Moncada
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Harmony Matshik Dakafay
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Cassio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| |
Collapse
|
8
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
9
|
Obiștioiu D, Hulea A, Cocan I, Alexa E, Negrea M, Popescu I, Herman V, Imbrea IM, Heghedus-Mindru G, Suleiman MA, Radulov I, Imbrea F. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants (Basel) 2023; 12:1807. [PMID: 37891886 PMCID: PMC10603989 DOI: 10.3390/antiox12101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The research aimed to determine the chemical composition, the antioxidant and anti-inflammatory activity as well as the antimicrobial activity against Gram-positive, Gram-negative and two fungal Candida ATCC strains of a commercial Boswellia essential oil (BEO) containing Boswellia carteri, Boswellia sacra, Boswellia papryfera, and Boswellia frereana. Additionally, molecular docking was carried out to show the molecular dynamics of the compounds identified from the essential oil against three bacterial protein targets and one fungal protein target. The major components identified by GC-MS (Gas Chromatography-Mass Spectrometry) were represented by α-pinene, followed by limonene. Evaluation of antioxidant activity using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) method showed high inhibition comparable to the synthetic antioxidant used as a control. Oxidative stability evaluation showed that BEO has the potential to inhibit primary and secondary oxidation products with almost the same efficacy as butylated hydroxyanisole (BHA). The use of BEO at a concentration of 500 ppm provided the best protection against secondary oxidation during 30 days of storage at room temperature, which was also evident in the peroxide value. Regarding the in vitro anti-inflammatory activity, the membrane lysis assay and the protein denaturation test revealed that even if the value of protection was lower than the value registered in the case of dexamethasone, the recommendation of using BEO as a protective agent stands, considering the lower side effects. Gram-positive bacteria proved more sensitive, while Pseudomonas aeruginosa presented different sensitivity, with higher MICs (minimal inhibitory concentration). Haemophilus influenzae demonstrated a MIC at 2% but with consecutive inhibitory values in a negative correlation with the increase in concentration, in contrast to E. coli, which demonstrated low inhibitory rates at high concentrations of BEO. The computational tools employed revealed interesting binding energies with compounds having low abundance. The interaction of these compounds and the proteins (tyrosyl-tRNA synthetase, DNA gyrase, peptide deformylase, 1,3-β-glucan synthase) predicts hydrogen bonds with amino acid residues, which are reported in the active sites of the proteins. Even so, compounds with low abundance in BEO could render the desired bioactive properties to the overall function of the oil sustained by physical factors such as storage and temperature. Interestingly, the findings from this study demonstrated the antioxidant and antimicrobial potential of Boswellia essential oil against food-related pathogens, thus making the oil a good candidate for usage in food, feed or food-safety-related products.
Collapse
Affiliation(s)
- Diana Obiștioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Gabriel Heghedus-Mindru
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| |
Collapse
|
10
|
El-Essawy RH, Al-Ashry S, Sabet NE, Ghobashy AM. Assessment of depth of penetration and antibiofilm properties of Boswellia sacra compared with calcium hydroxide intracanal medicament (in vitro study). AUST ENDOD J 2023; 49:295-301. [PMID: 36004503 DOI: 10.1111/aej.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Successful endodontic treatment requires advanced materials to eliminate biofilm This study aims to assess the penetration depth and the effectiveness of Boswellia sacra as a novel intracanal medicament compared with calcium hydroxide against Enterococcus faecalis biofilm. 60 single-rooted teeth were decoronated, prepared and sterilised. Fifty teeth were contaminated with a culture of E. faecalis (ATCC 19433) for 21 days. Two teeth were used to confirm the biofilm using scanning electron microscope. For colony-forming unit (CFU), 40 samples were divided into one control group (calcium hydroxide) and the other experimental group (B. sacra). Each group was divided into two subgroups to be tested at 3 and 7 days. The minimum inhibitory concentration (MIC) of B. sacra was determined, and the B. sacra's ethanolic extract medicament was prepared. Eight discs divided into groups similar to CFU were used to evaluate live/dead bacteria using confocal laser scanning microscopy (CLSM). Ten teeth were selected for penetration depth using CLSM. The intracanal medicaments were mixed with 0.1% rhodamine B. were inserted into the root canals 0.2 slices were dissected and viewed under CLSM. The MIC of B. sacra was 1.25 mg/ml. The CFU evaluation proved that B. sacra are more effective than calcium hydroxide in the 3 days groups. However, it was statistically insignificant compared with calcium hydroxide after 7 days. The depth of penetration of B. sacra exceeds that of calcium hydroxide. B. sacra is an effective intracanal medicament.
Collapse
Affiliation(s)
| | - Salma Al-Ashry
- Department of Endodontics, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
11
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
12
|
Zinc Oxide Nanoparticles as Potential Delivery Carrier: Green Synthesis by Aspergillus niger Endophytic Fungus, Characterization, and In Vitro/In Vivo Antibacterial Activity. Pharmaceuticals (Basel) 2022; 15:ph15091057. [PMID: 36145278 PMCID: PMC9500724 DOI: 10.3390/ph15091057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/17/2022] Open
Abstract
We aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using the endophytic fungal extract of Aspergillus niger. The prepared ZnO NPs were characterized, and their in vitro and in vivo antibacterial activity was investigated. Isolated endophytic fungus identification was carried out using 18S rRNA. A. niger endophytic fungal extract was employed for the green synthesis of ZnO NPs. The in vitro antibacterial activity of the prepared ZnO NPs was elucidated against Staphylococcus aureus using the broth microdilution method and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the in vivo antibacterial activity was elucidated using a systemic infection model in mice. The biosynthesized ZnO NPs showed a maximum optical density at 380 nm with characteristic peaks on the Fourier-transform infrared spectrum. The X-ray diffraction pattern was highly matched with a standard platform of zinc oxide crystals. Energy-dispersive X-ray analysis confirmed that the main composition of nanoparticles was zinc and oxygen atoms. Scanning and transmission electron microscopies showed spherical geometry with a smooth surface. Zeta potential measurements (26.6 ± 0.56 mV) verified the adequate stability of ZnO NPs. Minimum inhibitory concentrations of ZnO NPs against S. aureus isolates ranged from 8 to 128 µg/mL. Additionally, ZnO NPs revealed antibiofilm activity, resulting in the downregulation of the tested biofilm genes in 29.17% of S. aureus isolates. Regarding the in vivo experiment, ZnO NPs reduced congestion and fibrosis in liver and spleen tissues. They also improved liver function, increased the survival rate, and significantly decreased inflammatory markers (p < 0.05). ZnO NPs synthesized by A. niger endophytic fungus revealed a promising in vivo and in vitro antibacterial action against S. aureus isolates.
Collapse
|
13
|
Faisal Madhloom A, Bashir Hashim Al-Taweel F, Sha AM, Raad Abdulbaqi H. Antimicrobial Effect of Moringa Oleifera L. and Red Pomegranate against Clinically Isolated Porphyromonas gingivalis: in vitro Study. ARCHIVES OF RAZI INSTITUTE 2022; 77:1405-1419. [PMID: 36883151 PMCID: PMC9985785 DOI: 10.22092/ari.2022.357513.2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 03/09/2023]
Abstract
Moringa oleifera L. and red pomegranate extracts have been reported to inhibit gram-positive facultative anaerobe growth and inhibit the formation of biofilm on tooth surfaces. The current study aimed to assess the antibacterial effect of M. oleifera L. and red pomegranate extracts and their combinations against Porphyromonas gingivalis. The antimicrobial sensitivity, minimum inhibition concentrations (MIC), and minimum bactericidal concentrations after treatment with the aqueous extracts of M. oleifera L. and red pomegranate as well as their combination against clinically isolated P. gingivalis were determined using agar well diffusion and two-fold serial dilution. The anti-biofilm activity of the extracts and their combination was evaluated using the tube adhesion method. The phytochemical analysis was carried out using gas chromatography-mass spectrometry. It was found that P. gingivalis was sensitive to aqueous extract of M. oleifera L. seeds and red pomegranate albedo, however, not to M. oleifera L. leaves and red pomegranate seeds. The MIC value of M. oleifera L. seeds, red pomegranate albedo, and their combination were obtained at 12.5 mg/ml, 6.25 mg/ml, and 3.12 mg/ml against P. gingivalis, respectively. The extract combination had the highest anti-biofilm effect than M. oleifera L. seeds and red pomegranate albedo aqueous extracts at the minimum concentrations of 6.25 mg/ml, 25 mg/ml, and 12.5 mg/ml, respectively. The combination of red pomegranate albedo and M. oleifera L. seeds showed superior antibacterial and anti-biofilm effects against P. gingivalis, followed by red pomegranate albedo and M. oleifera L. seeds. This may highlight a promising alternative to the traditional chemicals that can be used as an adjunct in the treatment of periodontal diseases.
Collapse
Affiliation(s)
- A Faisal Madhloom
- Department of Periodontics, College of Dentistry, University of AlKafeel, Najaf, Iraq
| | | | - A M Sha
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq.,Smart Health Tower, Sulaymaniyah, Iraq
| | - H Raad Abdulbaqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
14
|
Encephalartos villosus Lem. Displays a Strong In Vivo and In Vitro Antifungal Potential against Candida glabrata Clinical Isolates. J Fungi (Basel) 2022; 8:jof8050521. [PMID: 35628776 PMCID: PMC9146621 DOI: 10.3390/jof8050521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, Candida glabrata has been recognized as one of the most common fungal species that is highly associated with invasive candidiasis. Its spread could be attributed to its increasing resistance to antifungal drugs. Thus, there is a high need for safer and more efficient therapeutic alternatives such as plant extracts. Here, we investigated the antifungal potential of Encephalartos villosus leaves methanol extract (EVME) against C. glabrata clinical isolates. Tentative phytochemical identification of 51 metabolites was conducted in EVME using LC–MS/MS. EVME demonstrated antifungal activity with minimum inhibitory concentrations that ranged from 32 to 256 µg/mL. The mechanism of the antifungal action was studied by investigating the impact of EVME on nucleotide leakage. Additionally, a sorbitol bioassay was performed, and we found that EVME affected the fungal cell wall. In addition, the effect of EVME was elucidated on the efflux activity of C. glabrata isolates using acridine orange assay and quantitative real-time PCR. EVME resulted in downregulation of the expression of the efflux pump genes CDR1, CDR2, and ERG11 in the tested isolates with percentages of 33.33%, 41.67%, and 33.33%, respectively. Moreover, we investigated the in vivo antifungal activity of EVME using a murine model with systemic infection. The fungal burden was determined in the kidney tissues. Histological and immunohistochemical studies were carried out to investigate the effect of EVME. We noticed that EVME reduced the congestion of the glomeruli and tubules of the kidney tissues of the rats infected with C. glabrata. Furthermore, it decreased both the proinflammatory cytokine tumor necrosis factor-alpha and the abnormal collagen fibers. Our results reveal, for the first time, the potential in vitro (by inhibition of the efflux activity) and in vivo (by decreasing the congestion and inflammation of the kidney tissues) antifungal activity of EVME against C. glabrata isolates.
Collapse
|
15
|
Attallah NGM, Mokhtar FA, Elekhnawy E, Heneidy SZ, Ahmed E, Magdeldin S, Negm WA, El-Kadem AH. Mechanistic Insights on the In Vitro Antibacterial Activity and In Vivo Hepatoprotective Effects of Salvinia auriculata Aubl against Methotrexate-Induced Liver Injury. Pharmaceuticals (Basel) 2022; 15:ph15050549. [PMID: 35631375 PMCID: PMC9145932 DOI: 10.3390/ph15050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Kafr El Zayat 31616, Al Gharbiya, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Selim Z. Heneidy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt;
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
16
|
Negm WA, El-Aasr M, Attia G, Alqahtani MJ, Yassien RI, Abo Kamer A, Elekhnawy E. Promising Antifungal Activity of Encephalartos laurentianus de Wild against Candida albicans Clinical Isolates: In Vitro and In Vivo Effects on Renal Cortex of Adult Albino Rats. J Fungi (Basel) 2022; 8:jof8050426. [PMID: 35628682 PMCID: PMC9144060 DOI: 10.3390/jof8050426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023] Open
Abstract
Candida albicans can cause various infections, especially in immunocompromised patients. Its ability to develop resistance to the current antifungal drugs as well as its multiple virulence factors have rendered the problem even more complicated. Thus, in the present investigation, we elucidated an in vitro and in vivo antifungal activity of Encephalartos laurentianus methanol extract (ELME) against C. albicans clinical isolates for the first time. A phytochemical identification of 64 compounds was conducted in ELME using LC-MS/MS. Interestingly, ELME exhibited antifungal activity with MIC values that ranged from 32–256 µg/mL. Furthermore, we investigated the antibiofilm activity of ELME against the biofilms formed by C. albicans isolates. ELME displayed antibiofilm activity using a crystal violet assay as it decreased the percentages of cells, moderately and strongly forming biofilms from 62.5% to 25%. Moreover, the antibiofilm impact of ELME was elucidated using SEM and fluorescent microscope. A significant reduction in the biofilm formation by C. albicans isolates was observed. In addition, we observed that ELME resulted in the downregulation of the biofilm-related tested genes (ALS1, BCR1, PLB2, and SAP5) in 37.5% of the isolates using qRT-PCR. Besides, the in vivo antifungal activity of ELME on the kidney tissues of rats infected with C. albicans was investigated using histological and immunohistochemical studies. ELME was found to protect against C. albicans induced renal damage, decrease desmin and inducible nitric oxide synthase, increase alkaline phosphatase, and increase infected rats’ survival rate. Additionally, the cytotoxicity of ELME was elucidated on Human Skin Fibroblast normal cells using MTT assay. ELME had an IC50 of 31.26 µg/mL. Thus, we can conclude that ELME might be a promising future source for antifungal compounds.
Collapse
Affiliation(s)
- Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.E.-A.); (G.A.)
- Correspondence: (W.A.N.); (E.E.)
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.E.-A.); (G.A.)
| | - Ghada Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.E.-A.); (G.A.)
| | - Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Rania Ibrahim Yassien
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Amal Abo Kamer
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
- Correspondence: (W.A.N.); (E.E.)
| |
Collapse
|
17
|
Taxonomical Investigation, Chemical Composition, Traditional Use in Medicine, and Pharmacological Activities of Boswellia sacra Flueck. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8779676. [PMID: 35222678 PMCID: PMC8881160 DOI: 10.1155/2022/8779676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Aromatic oleo-gum-resin secreted from B. sacra, reputed as frankincense, is widely used in traditional medicine to treat Alzheimer’s disease, gastric disorders, hepatic disorders, etc. Frankincense is also used in the cosmetic, perfume, and beverage and food industries. Frankincense is a rich resource for bioactive compounds, especially boswellic acids and derivatives. Although several reports have described frankincense’s constituents and pharmacological activities, there is no comprehensive study that covers the valuable information on this species. Therefore, the current review will focus on the phytochemistry, traditional uses, and pharmacological activities of B. sacra.
Collapse
|
18
|
Elucidation of the Metabolite Profile of Yucca gigantea and Assessment of Its Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041329. [PMID: 35209125 PMCID: PMC8878216 DOI: 10.3390/molecules27041329] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
The acute inflammation process is explained by numerous hypotheses, including oxidative stress, enzyme stimulation, and the generation of pro-inflammatory cytokines. The anti-inflammatory activity of Yucca gigantea methanol extract (YGME) against carrageenan-induced acute inflammation and possible underlying mechanisms was investigated. The phytochemical profile, cytotoxic, and antimicrobial activities were also explored. LC-MS/MS was utilized to investigate the chemical composition of YGME, and 29 compounds were tentatively identified. In addition, the isolation of luteolin-7-O-β-d-glucoside, apigenin-7-O-β-d-glucoside, and kaempferol-3-O-α-l-rhamnoside was performed for the first time from the studied plant. Inflammation was induced by subcutaneous injection of 100 μL of 1% carrageenan sodium. Rats were treated orally with YGME 100, 200 mg/kg, celecoxib (50 mg/kg), and saline, respectively, one hour before carrageenan injection. The average volume of paws edema and weight were measured at several time intervals. Levels of NO, GSH, TNF-α, PGE-2, serum IL-1β, IL-6 were measured. In additionally, COX-2 immunostaining and histopathological examination of paw tissue were performed. YGME displayed a potent anti-inflammatory influence by reducing paws edema, PGE-2, TNF-α, NO production, serum IL-6, IL-1β, and COX-2 immunostaining. Furthermore, it replenished the diminished paw GSH contents and improved the histopathological findings. The best cytotoxic effect of YGME was against human melanoma cell line (A365) and osteosarcoma cell line (MG-63). Moreover, the antimicrobial potential of the extract was evaluated against bacterial and fungal isolates. It showed potent activity against Gram-negative, Gram-positive, and fungal Candida albicans isolates. The promoting multiple effects of YGME could be beneficial in the treatment of different ailments based on its anti-inflammatory, antimicrobial, and cytotoxic effects.
Collapse
|
19
|
Attallah NGM, Elekhnawy E, Negm WA, Hussein IA, Mokhtar FA, Al-Fakhrany OM. In Vivo and In Vitro Antimicrobial Activity of Biogenic Silver Nanoparticles against Staphylococcus aureus Clinical Isolates. Pharmaceuticals (Basel) 2022; 15:194. [PMID: 35215306 PMCID: PMC8878289 DOI: 10.3390/ph15020194] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus can cause a wide range of severe infections owing to its multiple virulence factors in addition to its resistance to multiple antimicrobials; therefore, novel antimicrobials are needed. Herein, we used Gardenia thailandica leaf extract (GTLE), for the first time for the biogenic synthesis of silver nanoparticles (AgNPs). The active constituents of GTLE were identified by HPLC, including chlorogenic acid (1441.03 μg/g) from phenolic acids, and quercetin-3-rutinoside (2477.37 μg/g) and apigenin-7-glucoside (605.60 μg/g) from flavonoids. In addition, the antioxidant activity of GTLE was evaluated. The synthesized AgNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy (SEM), zeta potential, dynamic light scattering, and X-ray diffraction. The formed AgNPs had a spherical shape with a particle size range of 11.02-17.92 nm. The antimicrobial activity of AgNPs was investigated in vitro and in vivo against S. aureus clinical isolates. The minimum inhibitory concentration (MIC) of AgNPs ranged from 4 to 64 µg/mL. AgNPs significantly decreased the membrane integrity of 45.8% of the isolates and reduced the membrane potential by flow cytometry. AgNPs resulted in morphological changes observed by SEM. Furthermore, qRT-PCR was utilized to examine the effect of AgNPs on the gene expression of the efflux pump genes norA, norB, and norC. The in vivo examination was performed on wounds infected with S. aureus bacteria in rats. AgNPs resulted in epidermis regeneration and reduction in the infiltration of inflammatory cells. Thus, GTLE could be a vital source for the production of AgNPs, which exhibited promising in vivo and in vitro antibacterial activity against S. aureus bacteria.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Alsalam University, Tanta 3111, Egypt;
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
20
|
Histological assessment, anti-quorum sensing, and anti-biofilm activities of Dioon spinulosum extract: in vitro and in vivo approach. Sci Rep 2022; 12:180. [PMID: 34996996 PMCID: PMC8742103 DOI: 10.1038/s41598-021-03953-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium causing several health problems and having many virulence factors like biofilm formation on different surfaces. There is a significant need to develop new antimicrobials due to the spreading resistance to the commonly used antibiotics, partly attributed to biofilm formation. Consequently, this study aimed to investigate the anti-biofilm and anti-quorum sensing activities of Dioon spinulosum, Dyer Ex Eichler extract (DSE), against Pseudomonas aeruginosa clinical isolates. DSE exhibited a reduction in the biofilm formation by P. aeruginosa isolates both in vitro and in vivo rat models. It also resulted in a decrease in cell surface hydrophobicity and exopolysaccharide quantity of P. aeruginosa isolates. Both bright field and scanning electron microscopes provided evidence for the inhibiting ability of DSE on biofilm formation. Moreover, it reduced violacein production by Chromobacterium violaceum (ATCC 12,472). It decreased the relative expression of 4 quorum sensing genes (lasI, lasR, rhlI, rhlR) and the biofilm gene (ndvB) using qRT-PCR. Furthermore, DSE presented a cytotoxic activity with IC50 of 4.36 ± 0.52 µg/ml against human skin fibroblast cell lines. For the first time, this study reports that DSE is a promising resource of anti-biofilm and anti-quorum sensing agents.
Collapse
|
21
|
Antidiarrheal and Antibacterial Activities of Monterey Cypress Phytochemicals: In Vivo and In Vitro Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020346. [PMID: 35056664 PMCID: PMC8780600 DOI: 10.3390/molecules27020346] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Monterey cypress (Cupressus macrocarpa) is a decorative plant; however, it possesses various pharmacological activities. Therefore, we explored the phytochemical profile of C. macrocarpa root methanol extract (CRME) for the first time. Moreover, we investigated its antidiarrheal (in vivo), antibacterial, and antibiofilm (in vitro) activities against Salmonella enterica clinical isolates. The LC-ESI-MS/MS analysis of CRME detected the presence of 39 compounds, besides isolation of 2,3,2″,3″-tetrahydro-4'-O-methyl amentoflavone, amentoflavone, and dihydrokaempferol-3-O-α-l-rhamnoside for the first time. Dihydrokaempferol-3-O-α-l-rhamnoside presented the highest antimicrobial activity and the range of values of MICs against S. enterica isolates was from 64 to 256 µg/mL. The antidiarrheal activity of CRME was investigated by induction of diarrhea using castor oil, and exhibited a significant reduction in diarrhea and defecation frequency at all doses, enteropooling (at 400 mg/kg), and gastrointestinal motility (at 200, 400 mg/kg) in mice. The antidiarrheal index of CRME increased in a dose-dependent manner. The effect of CRME on various membrane characters of S. enterica was studied after typing the isolates by ERIC-PCR. Its impact on efflux and its antibiofilm activity were inspected. The biofilm morphology was observed using light and scanning electron microscopes. The effect on efflux activity and biofilm formation was further elucidated using qRT-PCR. A significant increase in inner and outer membrane permeability and a significant decrease in integrity and depolarization (using flow cytometry) were detected with variable percentages. Furthermore, a significant reduction in efflux and biofilm formation was observed. Therefore, CRME could be a promising source for treatment of gastrointestinal tract diseases.
Collapse
|
22
|
Alotaibi B, Mokhtar FA, El-Masry TA, Elekhnawy E, Mostafa SA, Abdelkader DH, Elharty ME, Saleh A, Negm WA. Antimicrobial Activity of Brassica rapa L. Flowers Extract on Gastrointestinal Tract Infections and Antiulcer Potential Against Indomethacin-Induced Gastric Ulcer in Rats Supported by Metabolomics Profiling. J Inflamm Res 2021; 14:7411-7430. [PMID: 35002276 PMCID: PMC8721290 DOI: 10.2147/jir.s345780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALsalam University, Al Gharbiyah, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Sally A Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, El Sadat City, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
23
|
Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics (Basel) 2021; 10:antibiotics10121444. [PMID: 34943656 PMCID: PMC8698344 DOI: 10.3390/antibiotics10121444] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Lung diseases such as asthma, chronic obstructive pulmonary diseases, and pneumonia are causing many global health problems. The COVID-19 pandemic has directed the scientific community's attention toward performing more research to explore novel therapeutic drugs for pulmonary diseases. Herein, gas chromatography coupled with mass spectrometry tentatively identified 44 compounds in frankincense ethanol extract (FEE). We investigated the antibacterial and antibiofilm effects of FEE against Pseudomonas aeruginosa bacteria, isolated from patients with respiratory infections. In addition, its in vitro immunomodulatory activity was explored by the detection of the gene expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMC). In addition, its anticancer activity against the A549 lung cancer cell line and human skin fibroblast (HSF) normal cell line was studied. Moreover, the in vivo lung protective potential of FEE was explored histologically and immunohistochemically in mice using a benzo(a)pyrene induced lung damage model. FEE exhibited antibacterial and antibiofilm activities besides the significant inhibition of gene expression of TNFα, IL-6, and NF-κB. FEE also exerted a cytotoxic effect against A549 cell line. Histological and immunohistochemical investigations with morphometric analysis of the mean area percentage and color intensity of positive TNF-α, COX-2, and NF-κB and Bcl-2 reactions revealed the lung protective activity of FEE. This study outlined the promising therapeutic activity of oleoresin obtained from B. dalzielii in the treatment of different pulmonary diseases.
Collapse
|
24
|
Negm WA, El-Aasr M, Kamer AA, Elekhnawy E. Investigation of the Antibacterial Activity and Efflux Pump Inhibitory Effect of Cycas thouarsii R.Br. Extract against Klebsiella pneumoniae Clinical Isolates. Pharmaceuticals (Basel) 2021; 14:ph14080756. [PMID: 34451853 PMCID: PMC8401967 DOI: 10.3390/ph14080756] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
The vast spread of multidrug-resistant bacteria has encouraged researchers to explore new antimicrobial compounds. This study aimed to investigate the phytochemistry and antibacterial activity of Cycas thouarsii R.Br. leaves extract against Klebsiella pneumoniae clinical isolates. The minimum inhibitory concentration (MIC) values of C. thouarsii extract ranged from 4 to 32 µg/mL. The impact of the treatment of the isolates with sub-inhibitory concentrations of C. thouarsii extract was investigated on the bacterial growth, membrane integrity, inner and outer membrane permeability, membrane depolarization, and bacterial morphology using a scanning electron microscope (SEM) and on the efflux activity using qRT-PCR. Interestingly, most K. pneumoniae isolates treated with C. thouarsii extract showed growth inhibition—a decrease in membrane integrity. In addition, we observed various morphological changes, a significant increase in inner and outer membrane permeability, a non-significant change in membrane depolarization, and a decrease in efflux activity after treatment. The phytochemical investigation of C. thouarsii extract revealed the isolation of one new biflavonoid, 5,7,7″,4‴-tetra-O-methyl-hinokiflavone (3), and five known compounds, stigmasterol (1), naringenin (2), 2,3-dihydrobilobetin (4), 4′,4‴-O-dimethyl amentoflavone (5), and hinokiflavone (6), for the first time. Moreover, the pure compounds′ MICs′ ranged from 0.25 to 2 µg/mL. Thus, C. thouarsii could be a potential source for new antimicrobials.
Collapse
Affiliation(s)
- Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
- Correspondence: (W.A.N.); (E.E.)
| | - Mona El-Aasr
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Amal Abo Kamer
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
- Correspondence: (W.A.N.); (E.E.)
| |
Collapse
|