1
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
2
|
Jayakumar J, Vinod V, Biswas L, Kumar V A, Biswas R. Exploring alternative strategies for Staphylococcus aureus nasal decolonization: insights from preclinical studies. Lett Appl Microbiol 2023; 76:ovad137. [PMID: 38066697 DOI: 10.1093/lambio/ovad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Nasal decolonization of Staphylococcus aureus with the antibiotic mupirocin is a common clinical practice before complex surgical procedures, to prevent hospital acquired infections. However, widespread use of mupirocin has led to the development of resistant S. aureus strains and there is a limited scope for developing new antibiotics for S. aureus nasal decolonization. It is therefore necessary to develop alternative and nonantibiotic nasal decolonization methods. In this review, we broadly discussed the effectiveness of different nonantibiotic antimicrobial agents that are currently not in clinical practice, but are experimentally proved to be efficacious in promoting S. aureus nasal decolonization. These include lytic bacteriophages, bacteriolytic enzymes, tea tree oil, apple vinegar, and antimicrobial peptides. We have also discussed the possibility of using photodynamic therapy for S. aureus nasal decolonization. This article highlights the importance of further large scale clinical studies for selecting the most suitable and alternative nasal decolonizing agent.
Collapse
Affiliation(s)
- Jayalakshmi Jayakumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vivek Vinod
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Anil Kumar V
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
3
|
Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy. J Funct Biomater 2023; 14:jfb14030151. [PMID: 36976075 PMCID: PMC10051966 DOI: 10.3390/jfb14030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microbial control through alternative therapies, such as the amniotic membrane (AM) and antimicrobial photodynamic therapy (aPDT), has been gaining prominence with the advancement of bacterial resistance to conventional treatments. This study aimed to evaluate the antimicrobial effect of AM isolated and associated with aPDT using the PHTALOX® as a photosensitizer (PS) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The groups studied were: C+; L; AM; AM+L; AM+PHTX; and AM+aPDT. The irradiation parameters were 660 nm, 50 J.cm−2, and 30 mW.cm−2. Two independent microbiological experiments were carried out in triplicate, and the results were analyzed by CFU/mL counting and a metabolic activity test, both statistically analyzed (p < 0.05). The integrity of the AM was verified after the treatments by a scanning electron microscope (SEM). The groups AM, AM+PHTX, and, mainly, AM+aPDT showed a statistical difference when compared to C+ regarding the decrease in CFU/mL and metabolic activity. SEM analysis showed significant morphological alterations in the AM+PHTX and AM+aPDT groups. The treatments with AM isolated or associated with PHTALOX® were adequate. The association had potentiated the biofilm effect, and the morphological differences presented by AM after treatment did not hinder its antimicrobial effect, encouraging its use in biofilm formation locals.
Collapse
|
4
|
de Oliveira Silva JV, Meneguello JE, Formagio MD, de Freitas CF, Hioka N, Pilau EJ, Marchiosi R, Machinski Junior M, de Abreu Filho BA, Zanetti Campanerut-Sá PA, Graton Mikcha JM. Proteomic Investigation over the Antimicrobial Photodynamic Therapy Mediated by Rose Bengal Against Staphylococcus aureus. Photochem Photobiol 2022; 99:957-966. [PMID: 36054748 DOI: 10.1111/php.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
In order, to understand the antimicrobial action of photodynamic therapy and how this technique can contribute to its application in the control of pathogens. The objective of the study was to employ a proteomic approach to investigate the protein profile of S. aureus after antimicrobial photodynamic therapy mediated by rose bengal (RB-aPDT). S. aureus was treated with RB (10 nmol/l) and illuminated with green LED (0.17 J/cm2 ) for cell viability evaluation. Afterward, proteomic analysis was employed for protein identification and bioinformatic tools to classify the differentially expressed proteins. The reduction of S. aureus after photoinactivation was ~2.5 log CFU/ml. A total of 12 proteins (four up-regulated and eight down-regulated), correspond exclusively to alteration by RB-aPDT. Functionally these proteins are distributed in protein binding, structural constituent of ribosome, proton transmembrane transporter activity, and ATPase activity. The effects of photodamage include alterations of levels of several proteins resulting in an activated stress response, altered membrane potential, and effects on energy metabolism. These 12 proteins required the presence of both light and RB suggesting a unique response to photodynamic effects. The information about this technique contributes valuable insights into bacterial mechanisms and the mode of action of photodynamic therapy.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Maíra Dante Formagio
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Camila Fabiano de Freitas
- Department of Chemistry, State University of Maringá, Paraná, Brazil.,Departament of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | | | | | | |
Collapse
|
5
|
Yuann JMP, Lee SY, He S, Wong TW, Yang MJ, Cheng CW, Huang ST, Liang JY. Effects of free radicals from doxycycline hyclate and minocycline hydrochloride under blue light irradiation on the deactivation of Staphylococcus aureus, including a methicillin-resistant strain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112370. [PMID: 34864528 DOI: 10.1016/j.jphotobiol.2021.112370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Doxycycline hyclate (DCH) and minocycline hydrochloride (MH) are tetracycline antibiotics and broad-spectrum antimicrobial agents. The changes in DCH and MH under blue light (λ = 462 nm) irradiation in alkaline conditions (BLIA) were investigated. Deactivation caused by superoxide anion radical (O2•-) and deactivation from DCH and MH during photolysis on Staphylococcus aureus (S. aureus), including methicillin-resistant S. aureus (MRSA), were studied. DCH is relatively unstable compared to MH under BLIA. The level of O2•- generated from the MH-treated photoreaction is lower than that from DCH photolysis, and the DCH-treated photoreaction is more efficient at inactivating S. aureus and MRSA at the same radiant intensity. DCH subjected to BLIA decreased the viability of S. aureus and MRSA by 3.84 and 5.15 log, respectively. Two photolytic products of DCH (PPDs) were generated under BLIA. The mass spectra of the PPDs featured molecular ions at m/z 460.8 and 458.8. The molecular formulas of the PPDs were C21H22N2O10 and C22H24N2O9, and their exact masses were 462.44 and 460.44 g/mol, respectively. These results bolster the photolytic oxidation that leads to DCH-enhanced deactivation of S. aureus and MRSA. Photochemical treatment of DCH could be applied as a supplement in hygienic processes.
Collapse
Affiliation(s)
- Jeu-Ming P Yuann
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 244012, Taiwan
| | - Sin He
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meei-Ju Yang
- Tea Research and Extension Station, Yangmei 326011, Taiwan
| | - Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan; Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40200, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan.
| |
Collapse
|
6
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|