1
|
Hosseini Hooshiar M, Salari S, Nasiri K, Salim US, Saeed LM, Yasamineh S, Safaralizadeh R. The potential use of bacteriophages as antibacterial agents in dental infection. Virol J 2024; 21:258. [PMID: 39425223 PMCID: PMC11490148 DOI: 10.1186/s12985-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Dental infections, such as apical Periodontitis, periodontitis, and peri-implantitis (PI), are closely associated with specific bacterial species, including Streptococcus mutans (S. mutans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum), among others. Antibiotics are extensively utilized for prophylactic and therapeutic purposes in the treatment of dental infections and other dental-related issues. Unfortunately, the rapid emergence of antimicrobial resistance has accompanied the increased use of antibiotics in recent years. Specific bacterial pathogens have reached a critical stage of antibiotic resistance, characterized by the proliferation of pan-resistant strains and the scarcity of viable therapeutic alternatives. Therapeutic use of particular bacteriophage (phage) particles that target bacterial pathogens is one potential alternative to antibiotics that are now being seriously considered for treating bacterial illnesses. A kind of virus known as a phage is capable of infecting and eliminating bacteria. Because they can't infect cells in plants and animals, phages might be a harmless substitute for antibiotics. To control oral disorders including periodontitis and dental caries, several research have been conducted in this area to study and identify phages from human saliva and dental plaque. The capacity of these agents to disturb biofilms expands their effectiveness against dental plaque biofilms and oral pathogens in cases of periodontitis, PI, and apical periodontitis. This review summarizes the current antibacterial properties of phages used to treat a variety of dental infections, such as periodontitis, peri-implantitis, infected dentin, and apical periodontitis.
Collapse
Affiliation(s)
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ula Samir Salim
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Lamya M Saeed
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Reza Safaralizadeh
- Restorative Dentistry Department of Dental Faculty, TABRIZ Medical University, Tabriz, Iran.
| |
Collapse
|
2
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Fang Q, Yin X, He Y, Feng Y, Zhang L, Luo H, Yin G, McNally A, Zong Z. Safety and efficacy of phage application in bacterial decolonisation: a systematic review. THE LANCET. MICROBE 2024; 5:e489-e499. [PMID: 38452780 DOI: 10.1016/s2666-5247(24)00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 03/09/2024]
Abstract
Colonisation by bacterial pathogens typically precedes invasive infection and seeds transmission. Thus, effective decolonisation strategies are urgently needed. The literature reports attempts to use phages for decolonisation. To assess the in-vivo efficacy and safety of phages for bacterial decolonisation, we performed a systematic review by identifying relevant studies to assess the in-vivo efficacy and safety of phages for bacterial decolonisation. We searched PubMed, Embase (Ovid), MEDLINE (Ovid), Web of Science, and the Cochrane Library to identify relevant articles published between Jan 1, 1990, and May 12, 2023, without language restrictions. We included studies that assessed the efficacy of phage for bacterial decolonisation in humans or vertebrate animal models. This systematic review is registered with PROSPERO, CRD42023457637. We identified 6694 articles, of which 56 (51 animal studies and five clinical reports) met the predetermined selection criteria and were included in the final analysis. The gastrointestinal tract (n=49, 88%) was the most studied bacterial colonisation site, and other sites were central venous catheters, lung, nose, skin, and urinary tract. Of the 56 included studies, the bacterial load at the colonisation site was reported to decrease significantly in 45 (80%) studies, but only five described eradication of the target bacteria. 15 studies reported the safety of phages for decolonisation. No obvious adverse events were reported in both the short-term and long-term observation period. Given the increasing life-threatening risks posed by bacteria that are difficult to treat, phages could be an alternative option for bacterial decolonisation, although further optimisation is required before their application to meet clinical needs.
Collapse
Affiliation(s)
- Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xin Yin
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yanling He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yan Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Linwan Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Huan Luo
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| |
Collapse
|
5
|
Zhao X, Li C, Yang H, Wei H, Li Y. Antibacterial Activity of a Lysin LysP53 against Streptococcus mutans. J Dent Res 2023; 102:1231-1240. [PMID: 37698342 DOI: 10.1177/00220345231182675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Dental caries is a common disease affecting quality of life globally. In the present study, we found that a bacteriophage lysin LysP53 against Acinetobacter baumannii possesses selective activity on Streptococcus mutans, the main etiological agent of dental caries, even in low pH caries microenvironments, whereas only minor LysP53 activity was detected against Streptococcus sanguinis, Streptococcus oralis, and Streptococcus mitis. Testing activity against S. mutans planktonic cells showed that 4 μM LysP53 could kill more than 84% of S. mutans within 1 min in buffer with optimal pHs ranging from 4.0 to 6.5. Daily application of LysP53 on biofilms formed in BHI medium supplemented or not with sucrose could reduce exopolysaccharides, expression of genes related to acid resistance and adhesion, and the number of live bacteria in the biofilms. LysP53 treatment also showed similar effects as 0.12% chlorhexidine in preventing enamel demineralization due to S. mutans biofilms, as well as effective removal of S. mutans colonization of tooth surfaces in mice without observed toxic effects. Because of its selective activity against main cariogenic bacteria and good activity in low pH caries microenvironments, it is advantageous to use LysP53 as an active agent for preventing caries.
Collapse
Affiliation(s)
- X Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Luo Z, Lin Y, Zhou X, Yang L, Zhang Z, Liu Z, Zhou M, Jiang J, Wu J, Liu Z, Jing P, Zhong Z. Biomineral-binding liposomes with dual antibacterial effects for preventing and treating dental caries. Biomater Sci 2023; 11:5984-6000. [PMID: 37503566 DOI: 10.1039/d3bm00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dental caries is a chronic oral disease that results from the demineralization of dental hard tissues caused by the long-term interaction of various pathogenic factors in the human oral cavity. Although magnolol (Mag) and fluconazole (FLC) have shown promising antibacterial activity against Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), their clinical application is limited due to hydrophobicity. In this study, we constructed biomineral-binding liposomes co-loaded with Mag and FLC (PPi-Mag/FLC-LPs) to overcome the hydrophobicity and achieve a dual antibacterial activity in the acidic microenvironment of caries. PPi-Mag/FLC-LPs were characterized by laser particle size analysis, transmission electron microscopy, and high-performance liquid chromatography (HPLC). The ability of PPi-Mag/FLC-LPs to bind hydroxyapatite was assessed in vitro using fluorescence microscopy and HPLC, while the antibacterial activity was examined by measuring drug effects on the acidogenicity, acid resistance, biofilm formation and survival of C. albicans and S. mutans. The pharmacodynamics of PPi-Mag/FLC-LPs was also evaluated in vivo in a rat model of dental caries. Mag and FLC were released rapidly from PPi-Mag/FLC-LPs in a pH-sensitive manner, and they bound effectively to hydroxyapatite, leading to a better antibacterial effect on C. albicans and S. mutans compared to free drugs or liposomes loaded with a single drug. PPi-Mag/FLC-LPs improved the medicinal properties of Mag and FLC and provided a rapid, pH-sensitive release of both drugs in vitro. PPi-Mag/FLC-LPs displayed good antibacterial activity in vivo, showing promise as a dual-drug delivery system for the prevention and treatment of caries.
Collapse
Affiliation(s)
- Zhongling Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
- The Second People's Hospital of Neijiang, Sichuan 641000, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiaoling Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Lingling Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zijun Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
7
|
Sundberg LR, Rantanen N, de Freitas Almeida GM. Mucosal Environment Induces Phage Susceptibility in Streptococcus mutans. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:128-135. [PMID: 36793554 PMCID: PMC9917281 DOI: 10.1089/phage.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathogenic bacteria are attracted toward mucosa, as it is their way of entry into the body. However, we know surprisingly little about the phage-bacterium interactions in the mucosal environment. Here, we explored the effect of the mucosal environment on growth characteristics and phage-bacterium interactions in Streptococcus mutans, a causative agent of dental caries. We found that although mucin supplementation increased bacterial growth and survival, it decreased S. mutans biofilm formation. More importantly, the presence of mucin had a significant effect on S. mutans phage susceptibility. In two experiments done in Brain Heart Infusion Broth, phage M102 replication was detected only with 0.2% mucin supplementation. In 0.1 × Tryptic Soy Broth, 0.5% mucin supplementation led to a 4-log increase in phage titers compared with the control. These results suggest that the mucosal environment can have a major role in the growth, phage sensitivity, and phage resistance of S. mutans, and underline the importance of understanding the effect of mucosal environment on phage-bacterium interactions.
Collapse
Affiliation(s)
- Lotta-Riina Sundberg
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Noora Rantanen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Gabriel Magno de Freitas Almeida
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Lin D, Hu Q, Yang L, Zeng X, Xiao Y, Wang D, Dai W, Lu H, Fang J, Tang Z, Wang Z. The niche-specialist and age-related oral microbial ecosystem: crosstalk with host immune cells in homeostasis. Microb Genom 2022; 8. [PMID: 35731208 PMCID: PMC9455711 DOI: 10.1099/mgen.0.000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although characterization of the baseline oral microbiota has been discussed, the current literature seems insufficient to draw a definitive conclusion on the interactions between the microbes themselves or with the host. This study focuses on the spatial and temporal characteristics of the oral microbial ecosystem in a mouse model and its crosstalk with host immune cells in homeostasis. The V3V4 regions of the 16S rRNA gene of 20 samples from four niches (tongue, buccal mucosa, keratinized gingiva and hard palate) and 10 samples from two life stages (adult and old) were analysed. Flow cytometry (FCM) was used to investigate the resident immune cells. The niche-specialist and age-related communities, characterized based on the microbiota structure, interspecies communications, microbial functions and interactions with immune cells, were addressed. The phylum Firmicutes was the major component in the oral community. The microbial community profiles at the genus level showed that the relative abundances of the genera Bacteroides, Lactobacillus and Porphyromonas were enriched in the gingiva. The abundance of the genera Streptococcus, Faecalibaculum and Veillonella was increased in palatal samples, while the abundance of Neisseria and Bradyrhizobium was enriched in buccal samples. The genera Corynebacterium, Stenotrophomonas, Streptococcus and Fusobacterium were proportionally enriched in old samples, while Prevotella and Lacobacillus were enriched in adult samples. Network analysis showed that the genus Lactobacillus performed as a central node in the buccal module, while in the gingiva module, the central nodes were Nesterenkonia and Hydrogenophilus. FCM showed that the proportion of Th1 cells in the tongue samples (38.18 % [27.03–49.34 %]) (mean [range]) was the highest. The proportion of γδT cells in the buccal mucosa (25.82 % [22.1–29.54 %]) and gingiva (20.42 % [18.31–22.53 %]) samples was higher (P<0.01) than those in the palate (14.18 % [11.69–16.67 %]) and tongue (9.38 % [5.38–13.37 %] samples. The proportion of Th2 (31.3 % [16.16–46.44 %]), Th17 (27.06 % [15.76–38.36 %]) and Treg (29.74 % [15.71–43.77 %]) cells in the old samples was higher than that in the adult samples (P<0.01). Further analysis of the interplays between the microbiomes and immune cells indicated that Th1 cells in the adult group, nd Th2, Th17 and Treg cells in the old group were the main immune factors strongly associated with the oral microbiota. For example, Th2, Th17 and Treg cells showed a significantly positive correlation with age-related microorganisms such as Sphingomonas, Streptococcus and Acinetobacter, while Th1 cells showed a negative correlation. Another positive correlation occurred between Th1 cells and several commensal microbiomes such as Lactobacillus, Jeotgalicoccus and Sporosarcina. Th2, Th17 and Treg cells showed the opposite trend. Together, our findings identify the niche-specialist and age-related characteristics of the oral microbial ecosystem and the potential associations between the microbiomes and the mucosal immune cells, providing critical insights into mucosal microbiology.
Collapse
Affiliation(s)
- Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Xian Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Yiwei Xiao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Wenxiao Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
9
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
10
|
Kowalski J, Górska R, Cieślik M, Górski A, Jończyk-Matysiak E. What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy? Antibiotics (Basel) 2022; 11:antibiotics11040446. [PMID: 35453197 PMCID: PMC9027636 DOI: 10.3390/antibiotics11040446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Correspondence:
| |
Collapse
|