1
|
Akkari H, Heleili N, Ozgumus OB, Merradi M, Reis A, Ayachi A, Akarsu N, Tufekci EF, Kiliç AO. Prevalence and molecular characterization of ESBL/pAmpC producing faecal Escherichia coli strains with widespread detection of CTX-M-15 isolated from healthy poultry flocks in Eastern Algeria. Microb Pathog 2024; 196:106973. [PMID: 39313136 DOI: 10.1016/j.micpath.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health. Thus, this study aimed to analyse E. coli in the faecal carriage of healthy poultry flocks and to investigate the phenotypic and genotypic characteristics of antimicrobial resistance, including integrons genes and phylogenetic groups. A total of 431 cloacal swabs from apparently healthy poultry from four regions in Eastern Algeria from December 2021 to October 2022. 360 E. coli were isolated; from broilers (n = 151), broiler breeders (n = 91), laying hens (n = 72), and breeding hens (n = 46). Among this, 281 isolates exhibited multidrug resistance (MDR) phenotype, 17 of the 360 E. coli isolates exhibited ESBL, and one isolate exhibited both ESBL/pAmpC. A representative collection of 183 among 281 MDR E. coli was selected for further analysis by PCR to detect genes encoding resistance to different antibiotics, and sequencing was performed on all positive PCR products of blaCTX-M and blaCMY-2 genes. Phylogenetic groups were determined in 80 E. coli isolates (20 from each of the four kinds of poultry). The blaCTX-M gene was found in 16 (94.11 %) ESBL-producing E. coli isolates within 11 strains co-expressing the blaSHV gene and 8 strains co-expressing the blaTEM gene. Sequence analysis showed frequent diversity in CTX-M-group-1, with blaCTX-M-15 being the most predominant (n = 11), followed by blaCTX-M-1 (n = 5). The blaCMY-2 gene was detected only in one ESBL/pAmpC isolate. Among the 183 tested isolates, various antimicrobial resistance genes were found (number of strains) blaTEM (n = 121), blaSHV (n = 12), tetA (n = 100), tetB (n = 29), sul1(n = 67), sul2 (n = 32), qnrS (n = 45), qnrB (n = 10), qnrA (n = 1), catA1(n = 13), aac-(6')-Ib (n = 3). Furthermore, class 1 and class 2 integrons were found in 113 and 2 E. coli, respectively. The isolates were classified into multiple phylogroups, including A (35 %), B1 (27.5 %), B2 and D each (18.75 %). The detection of integrons and different classes of resistance genes in the faecal carriage of healthy poultry production indicates that commensal E. coli could potentially act as a reservoir for antimicrobial resistance, posing a significant One Health challenge encompassing the interconnected domains of human, animal health and the environment. Here, we present the first investigation to describe the diversity of blaCTX-M producing E. coli isolates with widespread detection of CTX-M-15 and CTX-M-1 in healthy breeders (Broiler and breeding hens) in Eastern Algeria.
Collapse
Affiliation(s)
- Hafsa Akkari
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Nouzha Heleili
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - Osman Birol Ozgumus
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Manel Merradi
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - Ahu Reis
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ammar Ayachi
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Neslihan Akarsu
- Department of Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, 37200, Kastamonu, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
2
|
Vougat Ngom R, Jajere SM, Ayissi GJ, Tanyienow A, Moffo F, Watsop HM, Mimboe LM, Mouiche MM, Schüpbach-Regula G, Carmo LP. Unveiling the landscape of resistance against high priority critically important antimicrobials in food-producing animals across Africa: A scoping review. Prev Vet Med 2024; 226:106173. [PMID: 38503073 DOI: 10.1016/j.prevetmed.2024.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
The rapid population growth in Africa is associated with an increasing demand for livestock products which in turn can lead to antimicrobial use. Antimicrobial usage in animals contributes to the emergence and selection of resistant bacteria which constitutes a serious public health threat. This study aims to review and summarize the available information on highest priority critically important antimicrobials (HPCIAs) resistance in livestock production in Africa. This work will help to inform future policies for controlling antimicrobial resistance (AMR) in the food production chain. A scoping review was conducted according to the Cochrane handbook and following PRISMA 2020 guidelines for reporting. Primary research studies published after 1999 and reporting resistance of Escherichia coli, Enterococcus spp, Staphylococcus aureus, Salmonella spp, and Campylobacter spp to HPCIAs in poultry, cattle, pigs, goats, and sheep in Africa were searched in four databases. A total of 312 articles were included in the review. The majority of the studies (40.7) were conducted in North African countries. More than 49.0% of included studies involved poultry and 26.2% cattle. Cephalosporins and quinolones were the most studied antimicrobial classes. Of the bacteria investigated in the current review, E. coli (41.7%) and Salmonella spp (24.9%) represented the most commonly studied. High levels of resistance against erythromycin in E. coli were found in poultry (MR 96.1%, IQR 83.3-100.0%), cattle (MR 85.7%, IQR 69.2-100.0%), and pigs (MR 94.0%, IQR 86.2-94.0%). In sheep, a high level of resistance was observed in E. coli against nalidixic acid (MR 87.5%, IQR 81.3-93.8%). In goats, the low level of sensibility was noted in S. aureus against streptomycin (MR 86.8%, IQR 19.4-99.0%). The study provides valuable information on HPCIAs resistance in livestock production in Africa and highlights the need for further research and policies to address the public health risk of AMR. This will likely require an investment in diagnostic infrastructure across the continent. Awareness on the harmful impact of AMR in African countries is a requirement to produce more effective and sustainable measures to curb AMR.
Collapse
Affiliation(s)
- Ronald Vougat Ngom
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Saleh M Jajere
- Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Gaspard Ja Ayissi
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Akenghe Tanyienow
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Frédéric Moffo
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Hippolyte M Watsop
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Leina M Mimboe
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Mohamed Mm Mouiche
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Luís Pedro Carmo
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Ås 1433, Norway
| |
Collapse
|
3
|
Mohamed MYI, Habib I. Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2023; 12:3726. [PMID: 37893619 PMCID: PMC10606471 DOI: 10.3390/foods12203726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Foodborne bacterial infections caused by pathogens are a widespread problem in the Middle East, leading to significant economic losses and negative impacts on public health. This review aims to offer insights into the recent literature regarding the occurrence of harmful E. coli bacteria in the food supply of Arab countries. Additionally, it aims to summarize existing information on health issues and the state of resistance to antibiotics. The reviewed evidence highlights a lack of a comprehensive understanding of the extent to which harmful E. coli genes are present in the food supply of Arab countries. Efforts to identify the source of harmful E. coli in the Arab world through molecular characterization are limited. The Gulf Cooperation Council (GCC) countries have conducted few surveys specifically targeting harmful E. coli in the food supply. Despite having qualitative data that indicate the presence or absence of harmful E. coli, there is a noticeable absence of quantitative data regarding the actual numbers of harmful E. coli in chicken meat supplies across all Arab countries. While reports about harmful E. coli in animal-derived foods are common, especially in North African Arab countries, the literature emphasized in this review underscores the ongoing challenge that harmful E. coli pose to food safety and public health in Arab countries.
Collapse
Affiliation(s)
- Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Liang Y, Zhang L, Lai C, Ouyang Z, Zhang J. Evaluation of antibacterial activity of compounds isolated from the peel of Newhall navel orange. Nat Prod Res 2022; 37:2060-2064. [PMID: 36008769 DOI: 10.1080/14786419.2022.2116580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Fifteen compounds including one flavanone hesperitin (1), two cinnamic acid derivatives as (E)-4-hydroxycinnamic acid (2) and (E)-ferulic acid (3), eight polymethoxyflavones (PMFs) (4-11), and four hydroxylated PMFs (12-15) isolated from orange peel were subjected to antibacterial evaluation. Compounds 1-3 exhibited wide-spectrum antibacterial effects against four test strains involving Bacillus subtilis, Staphylococcus aureus, Xanthomonas citri subsp. citri (Xcc), and Meticillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentrations (MICs) ranging from 0.0312 to 0.125 mg/mL. In contrast, all PMFs showed weak antibacterial activity against these four strains with MICs being equal to or more than 0.125 mg/mL. Hydroxylated PMFs demonstrated better antibacterial effect against Xcc relative to PMFs. In addition, the synergistic effect against Xcc was obtained when compounds 1 and 3 were combined. Furthermore, the scanning electron microscopy (SEM) results of Xcc treated with both compounds 2 and 3 showed shrunken and rough surface morphologies, indicative of the cell membrane damage.
Collapse
Affiliation(s)
- Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Linyan Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Chunling Lai
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Zhigang Ouyang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| |
Collapse
|
5
|
Jerab J, Jansen W, Blackwell J, van Hout J, Palzer A, Lister S, Chantziaras I, Dewulf J, De Briyne N. Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives. Antibiotics (Basel) 2022; 11:1046. [PMID: 36009915 PMCID: PMC9404736 DOI: 10.3390/antibiotics11081046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Major efforts have been made by veterinary professionals to reduce the need for antibiotic use in animals. An online survey launched by the Federation of Veterinarians of Europe (FVE) aimed to gather responses from practicing veterinarians with field experience in metaphylactic livestock group treatment. Only 17% of all veterinarians (n = 183/1087, all species-specific responses merged) applied metaphylactic group treatments to 75% or more of all their treatments. Significantly less metaphylactic group treatments were reported in mixed practices (p = 0.002) and practices specialized in cattle (p < 0.001) as well as small (p = 0.007) and very small practices (p = 0.009). Gram-negative bacteria, mostly composed of Enterobacteriaceae and Pasteurellaceae, were considered by 75.3% (n = 967/1385) as the most devastating bacterial pathogens. Respondents alleged morbidity (20.1%, n = 201/998) and mortality (42.2%, n = 421/998) as major consequences for animal health and welfare if metaphylaxis would be banned. Responding veterinarians pointed towards vaccinations; improved biosecurity, including hygiene measures; and improved herd health management as the three most effective alternative measures to prevent metaphylactic treatment. However, more research is needed on how to implement appropriate alternatives in a holistic hurdle approach. Active support on a national level will be necessary for the development and application of targeted veterinary treatment guidelines for practitioners, which promote the understanding of drivers and include initiation criteria for metaphylactic group treatments in livestock.
Collapse
Affiliation(s)
- Julia Jerab
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium; (J.J.); (W.J.)
| | - Wiebke Jansen
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium; (J.J.); (W.J.)
| | - John Blackwell
- Brownlow Veterinary Group Ltd., Ellesmere Business Park, Oswestry Rd., Ellesmere SY12 0EW, UK;
| | - Jobke van Hout
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands;
| | - Andreas Palzer
- Veterinary Pig Practice Scheidegg, Bahnhofstrasse 30, D-88175 Scheidegg, Germany;
| | - Stephen Lister
- Lister Veterinary Consultancy, 125 The Street, Norwich NR8 5DF, UK;
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (J.D.)
| | - Nancy De Briyne
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium; (J.J.); (W.J.)
| |
Collapse
|
6
|
Giedraitiene A, Pereckaite L, Bredelyte-Gruodiene E, Virgailis M, Ciapiene I, Tatarunas V. CTX-M-producing Escherichia coli strains: resistance to temocillin, fosfomycin, nitrofurantoin and biofilm formation. Future Microbiol 2022; 17:789-802. [PMID: 35549350 DOI: 10.2217/fmb-2021-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: ESBL-producing and bacterial biofilms-forming Escherichia coli are associated with antimicrobial treatment failure. This study aimed to investigate the phenotypic resistance mechanisms of CTX-M E. coli against old antibiotics - cell wall synthesis inhibitors temocillin, nitrofurantoin and fosfomycin. Materials & Methods: Susceptibility to old antibiotics testing was performed using disk diffusion method, biofilm formation was evaluated spectrophotometrically, and PCR was used for the determination of CTX-M type. Results & conclusion: Temocillin was active against nearly 93%, nitrofurantoin and fosfomycin, respectively, 91.7% and 98.6% of tested E. coli. Thus, it demonstrated to be a good alternative therapeutic option against ESBL infections. Bacteria resistant to old antibiotics had CTX-M-15 or CTX-M-15, TEM-1 and OXA-1 combinations. No significant association was found between CTX-M E. coli resistance to temocillin, nitrofurantoin and fosfomycin; however, the level of biofilm formation was found as not affected by the type of CTX-M β-lactamases.
Collapse
Affiliation(s)
- Agne Giedraitiene
- Institute of Microbiology & Virology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Laura Pereckaite
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | | | - Marius Virgailis
- Institute of Microbiology & Virology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Ieva Ciapiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | - Vacis Tatarunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| |
Collapse
|
7
|
Lo Vecchio G, Cicero N, Nava V, Macrì A, Gervasi C, Capparucci F, Sciortino M, Avellone G, Benameur Q, Santini A, Gervasi T. Chemical Characterization, Antibacterial Activity, and Embryo Acute Toxicity of Rhus coriaria L. Genotype from Sicily (Italy). Foods 2022; 11:foods11040538. [PMID: 35206015 PMCID: PMC8871098 DOI: 10.3390/foods11040538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
This study reports a full characterization of the Sicilian sumac, Rhus coriaria L. This fruit represents a potential source of fiber (33.21 ± 1.02%) and unsaturated fatty acids, being the contents of linoleic and α-linolenic acids, 30.82 ± 1.21% and 1.85 ± 0.07%, respectively. In addition, the content of phenolic and total anthocyanin was 71.69 ± 1.23 mg/g as gallic acid equivalents, and 6.71 ± 0.12 mg/g as cyanidin-3-O-glucoside equivalents, respectively. The high content in mineral elements, consisting mainly of potassium, calcium, magnesium, and phosphorus, followed by aluminum, iron, sodium, boron, and zinc, was detected by inductively coupled plasma mass spectrometry (ICP-MS). Moreover, its antimicrobial activity was evaluated against multidrug resistant (MDR) microorganisms, represented by Escherichia coli and Klebsiella pneumoniae strains isolated from poultry. The activity of seven different sumac fruit extracts obtained using the following solvents—ethanol (SE), methanol (SM), acetone (SA), ethanol and water (SEW), methanol and water (SMW), acetone and water (SAW), water (SW)—was evaluated. The polyphenol profile of SM extract, which showed better activity, was analyzed by ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS). The major component identified was gallic acid, followed by quercetin, methyl digallate, pentagalloyl-hexoside, and kaempferol 3-O-glucoside. The non-toxicity of Sicilian R. coriaria was confirmed by testing the effect of the same extract on zebrafish embryos.
Collapse
Affiliation(s)
- Giovanna Lo Vecchio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.L.V.); (V.N.); (A.M.); (T.G.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.L.V.); (V.N.); (A.M.); (T.G.)
- Correspondence: (N.C.); (A.S.)
| | - Vincenzo Nava
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.L.V.); (V.N.); (A.M.); (T.G.)
| | - Antonio Macrì
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.L.V.); (V.N.); (A.M.); (T.G.)
| | - Claudio Gervasi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.G.); (F.C.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.G.); (F.C.)
| | - Marzia Sciortino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy; (M.S.); (G.A.)
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy; (M.S.); (G.A.)
| | - Qada Benameur
- Nursing Department, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (N.C.); (A.S.)
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.L.V.); (V.N.); (A.M.); (T.G.)
| |
Collapse
|