1
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
2
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
3
|
Li JX, Xu QH, Shang RY, Liu Q, Luo XC, Lin HW, Jiao WH. Aspergetherins A-D, New Chlorinated Biphenyls with anti-MRSA Activity from the Marine Sponge Symbiotic Fungus Aspergillus terreus 164018. Chem Biodivers 2023; 20:e202300010. [PMID: 36876631 DOI: 10.1002/cbdv.202300010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Aspergetherins A-D (1-4), four new chlorinated biphenyls, were isolated from the rice fermentation of a marine sponge symbiotic fungus Aspergillus terreus 164018, along with seven known biphenyl derivatives (5-11). The structures of four new compounds were determined by a comprehensive analysis of the spectroscopic data, including HR-ESI-MS and 2D NMR data. All 11 isolates were evaluated for their anti-bacterial activity against two strains of methicillin-resistant Staphylococcus aureus (MRSA). Among them, compounds 1, 3, 8 and 10 showed anti-MRSA activity with MIC values of 1.0-128 μg/mL. Preliminary structure-activity relationship analysis unveiled that both chlorinated substitution and esterification of 2-carboxylic acid could impact the antibacterial activity of biphenyls.
Collapse
Affiliation(s)
- Jia-Xin Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qi-Hang Xu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ru-Yi Shang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiang-Chao Luo
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Ravikumar V, Mijakovic I, Pandit S. Antimicrobial Activity of Graphene Oxide Contributes to Alteration of Key Stress-Related and Membrane Bound Proteins. Int J Nanomedicine 2022; 17:6707-6721. [PMID: 36597432 PMCID: PMC9805717 DOI: 10.2147/ijn.s387590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Antibacterial activity of graphene oxide (GO) has been extensively studied, wherein penetration of the bacterial cell membrane and oxidative stress are considered to play a major role in the bactericidal activity of GO. However, the specific mechanism responsible for the antibacterial activity of GO remains largely unknown. Hence, the goal of this study was to explore the mode of action of GO, via an in-depth proteomic analysis of the targeted bacteria. Methods Staphylococcus aureus was grown in the presence of GO and samples were collected at different growth phases to examine the cell viability and to analyze the changes in protein expression. Antimicrobial efficiency of GO was tested by assessing bacterial viability, live/dead staining and scanning electron microscopy. The intracellular reactive oxygen species (ROS) induced by GO treatment were examined by fluorescence microscopy. Label-free quantitative proteomics analysis was performed to examine the differentially regulated proteins in S. aureus after GO treatment. Results GO treatment was observed to reduce S. aureus viability, from 50 ± 17% after 4 h, to 93 ± 2% after 24 h. The live/dead staining confirmed this progressive antimicrobial effect of GO. SEM images revealed the wrapping of bacterial cells and their morphological disruption by means of pore formation due to GO insertion. GO treatment was observed to generate intracellular ROS, correlating to the loss of cell viability. The proteomics analysis revealed alteration in the expression of cell membrane, oxidative stress response, general stress response, and virulence-associated proteins in GO-treated bacterial cells. The time-dependent bactericidal activity of GO correlated with a higher number of differentially regulated proteins involved in the above.-mentioned processes. Conclusion The obtained results suggest that the time-dependent bactericidal effect of GO is attributed to its wrapping/trapping ability, ROS production and due to physical disruption of the cell membrane.
Collapse
Affiliation(s)
- Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden,Correspondence: Santosh Pandit, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Göteborg, 41296, Sweden, Tel +46 729484011, Fax +46 317723801, Email
| |
Collapse
|
5
|
Zhang H, Chen C, Yang Z, Ye L, Miao J, Lan Y, Wang Q, Ye Z, Cao Y, Liu G. Combined transcriptomic and proteomic analysis of the antibacterial mechanisms of an antimicrobial substance produced by Lactobacillus paracasei FX-6 against colistin-resistant Escherichia coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Sionov RV, Banerjee S, Bogomolov S, Smoum R, Mechoulam R, Steinberg D. Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int J Mol Sci 2022; 23:7798. [PMID: 35887146 PMCID: PMC9319909 DOI: 10.3390/ijms23147798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Shreya Banerjee
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Sergei Bogomolov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Reem Smoum
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| |
Collapse
|
7
|
Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan. Antibiotics (Basel) 2022; 11:antibiotics11040496. [PMID: 35453247 PMCID: PMC9033113 DOI: 10.3390/antibiotics11040496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus (S. aureus) ST22 is considered a clinically important clone because an epidemic strain EMRSA-15 belongs to ST22, and several outbreaks of this clone have been documented worldwide. We performed genomic analysis of an S. aureus strain Lr2 ST22 from Pakistan and determined comparative analysis with other ST22 strains. The genomic data show that Lr2 belongs to spa-type t2986 and harbors staphylococcal cassette chromosome mec (SCCmec) type IVa(2B), one complete plasmid, and seven prophages or prophage-like elements. The strain harbors several prophage-associated virulence factors, including Panton–Valentine leukocidin (PVL) and toxic shock syndrome toxin (TSST). The single nucleotide polymorphism (SNPs)-based phylogenetic relationship inferred from whole genome and core genome revealed that strain Lr2 exhibits the nearest identities to a South African community-acquired methicillin-resistant S. aureus (CA-MRSA) ST22 strain and makes a separate clade with an Indian CA-MRSA ST22 strain. Although most ST22 strains carry blaZ, mecA, and mutations in gyrA, the Lr2 strain does not have the blaZ gene but, unlike other ST22 strains, carries the antibiotic resistance genes erm(C) and aac(6′)-Ie-aph(2″)-Ia. Among ST22 strains analyzed, only the strain Lr2 possesses both PVL and TSST genes. The functional annotation of genes unique to Lr2 revealed that mobilome is the third-largest Cluster of Orthologous Genes (COGs) category, which encodes genes associated with prophages and transposons. This possibly makes methicillin-resistant S. aureus (MRSA) Lr2 ST22 strain highly virulent, and this study would improve the knowledge of MRSA ST22 strains in Pakistan. However, further studies are needed on a large collection of MRSA to comprehend the genomic epidemiology and evolution of this clone in Pakistan.
Collapse
|