1
|
Isleem RS, Eid AM, Hassan SED, Aboshanab KM, El-Housseiny GS. Deciphering the nature and statistical optimization of antimicrobial metabolites of two endophytic bacilli. AMB Express 2025; 15:10. [PMID: 39806214 PMCID: PMC11730024 DOI: 10.1186/s13568-024-01811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, Allium sativum, garlic, was selected to isolate endophytic bacteria and to evaluate the antimicrobial, antiviral, antioxidant, and cytotoxic activities of their produced metabolites followed by identification of the biosynthetic gene cluster of the antimicrobial metabolites using Oxford Nanopore Technology (ONT). Two bacterial isolates, C6 and C11, were found to have a broad-spectrum antagonistic effect against four standard microbial strains and were molecularly identified using 16 S ribosomal RNA sequence analysis and deposited in a local culture collection as B. velezensis CCASU-C6, and B. subtilis CCASU-C11, respectively. Optimization for the maximum production of antimicrobial metabolites revealed that a four-day incubation period was optimal, with sucrose and tryptone serving as the best carbon and nitrogen sources for the fermentation media. Response surface methodology model using the central composite design was created resulting in a 1.2-fold and 1.8-fold improvement in antimicrobial metabolite(s) production of C6 and C11 isolates, respectively. The optimal production conditions were found to be a temperature of 33 °C, pH of 7, and an agitation rate of 200 rpm for C6 metabolite, and a temperature of 37 °C, pH of 7, and an agitation rate of 250 rpm for C11 metabolite. Both bacterial isolates displayed antioxidant and antiviral activity and mild cytotoxic action. Genomic sequence and antiSMASH analysis showed that the biosynthetic gene clusters of bacillomycin, mycosubtilin, fengycin, and macrolactin H in B. velezensis CCASU-C6 and bacillibactin and Macrolactin H in B. subtilis CCASU-C11 showed 100% conservation.
Collapse
Affiliation(s)
- Raghda S Isleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Soliman NK, Abbas AM, El Tayeb WN, Alshahrani MY, Aboshanab KM. Whole genome sequence and LC-Mass for identifying antimicrobial metabolites of Bacillus licheniformis endophyte. AMB Express 2024; 14:139. [PMID: 39704988 DOI: 10.1186/s13568-024-01789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a critical public health issue that requiring immediate action. Wild halophytic plants can be the solution for the AMR crisis because they harbor unique endophytes capable of producing potent antimicrobial metabolites. This study aimed at identifying promising and antimicrobial metabolites produced by endophytic/epiphytic bacteria recovered from the wild Bassia scoparia plant. Standard methods were employed for the isolation of endophytes/epiphytes. Whole genome sequence (WGS) using Oxford Nanopore technology followed by antiSMASH analysis coupled with advanced LC-MS spectroscopic analysis were used for identification of the active antimicrobial metabolites. This study identified Bacillus licheniformis strain CCASU-B18 as a promising endophytic bacterium from the Bassia scoparia plant. In addition, the strain showed broad-spectrum antibacterial activity against three standard and five MDR clinical Gram-positive and Gram-negative isolates, and antifungal activity against the standard C. albicans strain. Six main antimicrobial metabolites-thermoactinoamide A, bacillibactins, lichenysins, lichenicidins, fengycin, and bacillomycin-were verified to exist by whole genome sequencing for identifying the respective conserved biosynthetic gene clusters in conjunction with LC/MS-MS analysis. The complete genomic DNA (4125835) and associated plasmid (205548 bp) of the promising endophytic isolate were sequenced, assembled, annotated, and submitted into the NCBI GenBank database under the accession codes, CP157373. In conclusion, Bacillus licheniformis strain CCASU-B18, a promising endophytic bacterium exhibiting broad-spectrum antimicrobial activities, was isolated. Future research is highly recommended to optimize the culture conditions that will be employed to enhance the production of respective antimicrobial metabolites, as well as testing these compounds against a broader range of MDR-resistant pathogens.
Collapse
Affiliation(s)
- Nourhan K Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmad M Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr, South Sinai, Egypt
| | - Wafaa N El Tayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
3
|
El-Sayed SE, Abdelaziz NA, Alshahrani MY, El-Housseiny GS, Aboshanab KM. Biologically active metabolites of Alcaligenes faecalis: diversity, statistical optimization, and future perspectives. Future Sci OA 2024; 10:2430452. [PMID: 39600180 DOI: 10.1080/20565623.2024.2430452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Alcaligenes faecalis is a Gram-negative, rod-shaped bacterium that is common in the environment and has been reported to have various bioactive metabolites of industrial potential applications, including antifungal, antibacterial, antimycobacterial, antiparasitic, anticancer, antioxidant activities. In this review, we highlighted and discussed the respective metabolites, pointing out their chemical diversities, purification, current challenges, and future directions. A. faecalis has an industrial role in biodegradation, biosurfactants, and different enzyme production. In this review, the up-to-date various Response Surface Methodology methods (RSM) that can be employed for statistical optimization of the bioactive secondary metabolites have been discussed and highlighted, pointing out the optimal use of each method, current challenges, and future directions.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Selangor, Malaysia
| |
Collapse
|
4
|
Guo Z, Lei Y, Wang Q. Chinese expert consensus on standard technical specifications for a gut microecomics laboratory (Review). Exp Ther Med 2024; 28:403. [PMID: 39234587 PMCID: PMC11372251 DOI: 10.3892/etm.2024.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem that not only affects various physiological functions, such as metabolism, inflammation and the immune response, but also has an important effect on the development of tumors and response to treatment. The detection of intestinal flora enables the timely identification of disease-related flora abnormalities, which has significant implications for both disease prevention and treatment. In the field of basic and clinical research targeting gut microbiome, there is a need to recognize and understand the laboratory assays for gut microbiomics. Currently, there is no unified standard for the experimental procedure, quality management and report interpretation of intestinal microbiome assay technology. In order to clarify the process, the Tumor and Microecology Committee of China Anti-Cancer Association and the Tumor and Microecology Committee of Hubei Provincial Immunology Society organized relevant experts to discuss and put forward the standard technical specifications for gut microecomics laboratories, which provides a basis for further in-depth research in the field of intestinal microecomics.
Collapse
Affiliation(s)
- Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
5
|
Eltokhy MA, Saad BT, Eltayeb WN, Alshahrani MY, Radwan SMR, Aboshanab KM, Ashour MSE. Metagenomic nanopore sequencing for exploring the nature of antimicrobial metabolites of Bacillus haynesii. AMB Express 2024; 14:52. [PMID: 38704474 PMCID: PMC11069495 DOI: 10.1186/s13568-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.
Collapse
Affiliation(s)
- Mohamed A Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Wafaa N Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Sahar M R Radwan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Organization of African Unity St., Cairo, 11651, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Organization of African Unity St., Cairo, 11566, Egypt.
| | - Mohamed S E Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, 11651, Egypt
| |
Collapse
|
6
|
Helal AA, Saad BT, Saad MT, Mosaad GS, Aboshanab KM. Benchmarking long-read aligners and SV callers for structural variation detection in Oxford nanopore sequencing data. Sci Rep 2024; 14:6160. [PMID: 38486064 PMCID: PMC10940726 DOI: 10.1038/s41598-024-56604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Structural variants (SVs) are one of the significant types of DNA mutations and are typically defined as larger-than-50-bp genomic alterations that include insertions, deletions, duplications, inversions, and translocations. These modifications can profoundly impact the phenotypic characteristics and contribute to disorders like cancer, response to treatment, and infections. Four long-read aligners and five SV callers have been evaluated using three Oxford Nanopore NGS human genome datasets in terms of precision, recall, and F1-score statistical metrics, depth of coverage, and speed of analysis. The best SV caller regarding recall, precision, and F1-score when matched with different aligners at different coverage levels tend to vary depending on the dataset and the specific SV types being analyzed. However, based on our findings, Sniffles and CuteSV tend to perform well across different aligners and coverage levels, followed by SVIM, PBSV, and SVDSS in the last place. The CuteSV caller has the highest average F1-score (82.51%) and recall (78.50%), and Sniffles has the highest average precision value (94.33%). Minimap2 as an aligner and Sniffles as an SV caller act as a strong base for the pipeline of SV calling because of their high speed and reasonable accomplishment. PBSV has a lower average F1-score, precision, and recall and may generate more false positives and overlook some actual SVs. Our results are valuable in the comprehensive evaluation of popular SV callers and aligners as they provide insight into the performance of several long-read aligners and SV callers and serve as a reference for researchers in selecting the most suitable tools for SV detection.
Collapse
Affiliation(s)
- Asmaa A Helal
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt.
| | - Mina T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Gamal S Mosaad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abassi, Cairo, 11566, Egypt.
| |
Collapse
|
7
|
Metagenomic nanopore sequencing versus conventional diagnosis for identification of the dieback pathogens of mango trees. Biotechniques 2022; 73:261-272. [DOI: 10.2144/btn-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dieback is one of the most dangerous fungal diseases affecting mango trees. In this study, nanopore metagenome sequencing of the root-soil samples and infected plant tissues was conducted to identify the fungal pathogens present. Soil analysis of the infected mango trees showed the abundance of the Dikarya subkingdom (59%) including Lasiodiplodia theobromae (15%), Alternaria alternata (6%), Ceratocystis huliohia and Colletotrichum gloeosporioides. Analysis of the infected plant tissues revealed the presence of A. alternata (34%). The data were deposited in the National Center of Biotechnology Information (PRJNA767267). In conclusion, nanopore metagenome sequencing analysis was a valuable tool to rapidly identify dieback-associated fungal pathogens.
Collapse
|
8
|
Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer. Genes (Basel) 2022; 13:genes13091583. [PMID: 36140751 PMCID: PMC9498802 DOI: 10.3390/genes13091583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
The goal of biomarker testing, in the field of personalized medicine, is to guide treatments to achieve the best possible results for each patient. The accurate and reliable identification of everyone’s genome variants is essential for the success of clinical genomics, employing third-generation sequencing. Different variant calling techniques have been used and recommended by both Oxford Nanopore Technologies (ONT) and Nanopore communities. A thorough examination of the variant callers might give critical guidance for third-generation sequencing-based clinical genomics. In this study, two reference genome sample datasets (NA12878) and (NA24385) and the set of high-confidence variant calls provided by the Genome in a Bottle (GIAB) were used to allow the evaluation of the performance of six variant calling tools, including Human-SNP-wf, Clair3, Clair, NanoCaller, Longshot, and Medaka, as an integral step in the in-house variant detection workflow. Out of the six variant callers understudy, Clair3 and Human-SNP-wf that has Clair3 incorporated into it achieved the highest performance rates in comparison to the other variant callers. Evaluation of the results for the tool was expressed in terms of Precision, Recall, and F1-score using Hap.py tools for the comparison. In conclusion, our findings give important insights for identifying accurate variants from third-generation sequencing of personal genomes using different variant detection tools available for long-read sequencing.
Collapse
|
9
|
Eltokhy MA, Saad BT, Eltayeb WN, Yahia IS, Aboshanab KM, Ashour MSE. Exploring the Nature of the Antimicrobial Metabolites Produced by Paenibacillus ehimensis Soil Isolate MZ921932 Using a Metagenomic Nanopore Sequencing Coupled with LC-Mass Analysis. Antibiotics (Basel) 2021; 11:antibiotics11010012. [PMID: 35052889 PMCID: PMC8773065 DOI: 10.3390/antibiotics11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The continuous emergence of multidrug-resistant (MDR) pathogens poses a global threat to public health. Accordingly, global efforts are continuously conducted to find new approaches to infection control by rapidly discovering antibiotics, particularly those that retain activities against MDR pathogens. In this study, metagenomic nanopore sequence analysis coupled with spectroscopic methods has been conducted for rapid exploring of the various active metabolites produced by Paenibacillus ehimensis soil isolate. Preliminary soil screening resulted in selection of a Gram-positive isolate identified via 16S ribosomal RNA gene sequencing as Paenibacillus ehimensis MZ921932. The isolate showed a broad range of activity against MDR Gram-positive, Gram-negative, and Candida spp. A metagenomics sequence analysis of the soil sample harboring Paenibacillus ehimensis isolate MZ921932 (NCBI GenBank accession PRJNA785410) revealed the presence of conserved biosynthetic gene clusters of petrobactin, tridecaptin, locillomycin (β-lactone), polymyxin, and macrobrevin (polyketides). The liquid chromatography/mass (LC/MS) analysis of the Paenibacillus ehimensis metabolites confirmed the presence of petrobactin, locillomycin, and macrobrevin. In conclusion, Paenibacillus ehimensis isolate MZ921932 is a promising rich source for broad spectrum antimicrobial metabolites. The metagenomic nanopore sequence analysis was a rapid, easy, and efficient method for the preliminary detection of the nature of the expected active metabolites. LC/MS spectral analysis was employed for further confirmation of the nature of the respective active metabolites.
Collapse
Affiliation(s)
- Mohamed A. Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Bishoy T. Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo 11765, Egypt;
| | - Wafaa N. Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Str., Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-010-075-82620; Fax: +20-202-240-51107
| | - Mohamed S. E. Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|