1
|
Kelly M, Hynds P, Brown RS, McDermott K, Petculescu I, Majury AL. The use of E. coli phylogrouping and microbial source tracking (non-species specific, human-specific, bovine-specific bacteroidales markers) to elucidate hydro(geo)logical contamination mechanisms in southeastern Ontario, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125080. [PMID: 39374759 DOI: 10.1016/j.envpol.2024.125080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
In Ontario, monitoring, maintenance, and treatment of private drinking systems (e.g. wells) are the responsibility of the well owner. Fecal contamination of drinking water threatens public health, particularly in rural communities which are often fully reliant on unregulated private groundwater as a primary drinking water source. Private well users face a higher risk of acute gastrointestinal illness compared to those served by municipally operated systems (Murphy et al., 2016). Accordingly, the current study sought to characterize the fecal indicator, E. coli, isolated from southeastern Ontario private groundwater wells, including phylogroups and host source. Results were examined in the context of antecedent climate and local hydrogeological setting to elucidate likely contaminant sources and pathways. A total of 737 E. coli isolates from 260 private wells were assigned to phylogroups using the Clermont PCR phylotyping method, with likely host source determined using host-specific Bacteroidales 16S rRNA RT qPCR assays. Multivariate models were developed for the main E. coli phylogroups (A, B1, B2, and D) and all microbial source tracking markers. Models were coupled for interpretation where possible, based on associations between phylogroups and MST markers. Preferential subsurface flow, and to a lesser degree, overland flow, were likely mechanisms of contamination across all models. Distinct temporal associations were found based on the fecal source. Multiple models were developed and will be discussed, in an attempt to elucidate source-specific contamination mechanisms, in support of risk assessment and appropriate protective actions.
Collapse
Affiliation(s)
- Madeleine Kelly
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - Ioan Petculescu
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Anna L Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Karakaya E, Abay S, Aydin F. The phylogroups and antibiotic susceptibilities of Escherichia coli isolates from the feces of Anatolian Ground Squirrels (Spermophilus xanthoprymnus). Microb Pathog 2024; 193:106783. [PMID: 38969188 DOI: 10.1016/j.micpath.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The current study was conducted to determine the phylogroups and antibiotic susceptibilities of Escherichia coli isolates recovered from fecal samples of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) and to examine the relationship between them. Eighty-two E. coli isolates obtained from 150 fecal samples were investigated. The quadruplex polymerase chain reaction (PCR), phylogroup C-, and E-specific mPCR were subjected to phylogenetic typing of the isolates. The susceptibilities to fifteen antibiotics of the isolates were detected by the disk diffusion method. In the result of phylogenetic typing, phylogroup B2 was most predominant (58.6 %), followed by B1 (25.6 %), E (8.5 %), C (4.9 %), and D (2.4 %). The phylogroup A, F, and Escherichia clades were not detected. The antibiotic susceptibility test revealed that 59.8 % (49/82) and 19.5 % (16/82) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. Twenty-six (31.7 %), 19 (23.2 %), 11 (13.4 %), and 10 (12.2 %) of the isolates were found to be resistant to gentamicin, tetracycline, amoxicillin-clavulanic acid, and cefoxitin. Of the 49 E. coli isolates that were found to be resistant to any antibiotic analyzed, 30, 13, 4, and 2 were located in phylogroup B2, B1, E, and D, respectively. MDR isolates were mostly located in both phylogroup B1 (31.3 %) and B2 (31.3 %). In conclusion, data from the current study suggest that the isolates may potentially have pathogenic properties, since the majority (69.5 %) of E. coli isolates from fecal samples of Spermophilus xanthoprymnus were located in the pathogenic phylogroup and resistance to various antibiotics was detected.
Collapse
Affiliation(s)
- Emre Karakaya
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye.
| | - Seçil Abay
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye
| | - Fuat Aydin
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye
| |
Collapse
|
3
|
Aworh MK, Thakur S, Gensler C, Harrell E, Harden L, Fedorka-Cray PJ, Jacob M. Characteristics of antimicrobial resistance in Escherichia coli isolated from retail meat products in North Carolina. PLoS One 2024; 19:e0294099. [PMID: 38180979 PMCID: PMC10769054 DOI: 10.1371/journal.pone.0294099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is commonly used as an indicator for antimicrobial resistance (AMR) in food, animal, environment, and human surveillance systems. Our study aimed to characterize AMR in E. coli isolated from retail meat purchased from grocery stores in North Carolina, USA as part of the National Antimicrobial Resistance Monitoring System (NARMS). MATERIALS AND METHODS Retail chicken (breast, n = 96; giblets, n = 24), turkey (n = 96), and pork (n = 96) products were purchased monthly from different counties in North Carolina during 2022. Label claims on packages regarding antibiotic use were recorded at collection. E. coli was isolated from meat samples using culture-based methods and isolates were characterized for antimicrobial resistance using whole genome sequencing. Multi-locus sequence typing, phylogroups, and a single nucleotide polymorphism (SNP)-based maximum-likelihood phylogenic tree was generated. Data were analyzed statistically to determine differences between antibiotic use claims and meat type. RESULTS Of 312 retail meat samples, 138 (44.2%) were positive for E. coli, with turkey (78/138; 56.5%) demonstrating the highest prevalence. Prevalence was lower in chicken (41/138; 29.7%) and pork (19/138;13.8%). Quality sequence data was available from 84.8% (117/138) of the E. coli isolates, which included 72 (61.5%) from turkey, 27 (23.1%) from chicken breast, and 18 (15.4%) from pork. Genes associated with AMR were detected in 77.8% (91/117) of the isolates and 35.9% (42/117) were defined as multidrug resistant (MDR: being resistant to ≥3 distinct classes of antimicrobials). Commonly observed AMR genes included tetB (35%), tetA (24.8%), aph(3'')-lb (24.8%), and blaTEM-1 (20.5%), the majority of which originated from turkey isolates. Antibiotics use claims had no statistical effect on MDR E. coli isolates from the different meat types (X2 = 2.21, p = 0.33). MDR was observed in isolates from meat products with labels indicating "no claims" (n = 29; 69%), "no antibiotics ever" (n = 9; 21.4%), and "organic" (n = 4; 9.5%). Thirty-four different replicon types were observed. AMR genes were carried on plasmids in 17 E. coli isolates, of which 15 (88.2%) were from turkey and two (11.8%) from chicken. Known sequence types (STs) were described for 81 E. coli isolates, with ST117 (8.5%), ST297 (5.1%), and ST58 (3.4%) being the most prevalent across retail meat types. The most prevalent phylogroups were B1 (29.1%) and A (28.2%). Five clonal patterns were detected among isolates. CONCLUSIONS E. coli prevalence and the presence of AMR and MDR were highest in turkey retail meat. The lack of an association between MDR E. coli in retail meat and antibiotic use claim, including those with no indication of antimicrobial use, suggests that additional research is required to understand the origin of resistance. The presence of ST117, an emerging human pathogen, warrants further surveillance. The isolates were distinctly diverse suggesting an instability in population dynamics.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Catherine Gensler
- Department of Agricultural and Human Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Paula J. Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Megan Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
4
|
Rega M, Andriani L, Poeta A, Casadio C, Diegoli G, Bonardi S, Conter M, Bacci C. Transmission of β-lactamases in the pork food chain: A public health concern. One Health 2023; 17:100632. [PMID: 38024261 PMCID: PMC10665163 DOI: 10.1016/j.onehlt.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is a risk for public health that requires management in a One Health perspective, including humans, animals, and the environment. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical issue regards resistance to the Critically Important Antimicrobials (CIAs), such as β-lactams antibiotics. Here, pigs were analysed along the entire food producing chain, including feces, carcasses and pork products (fresh meat, fermented and seasoned products) ensuring treaciability of all samples. Escherichia coli were isolated and their ability to produce ESBL and AmpC β-lactamases was evaluated both phenotypically and genotypically. Strains with the same AMR profile from feces, carcasses, and meat products were selected for phylogenetic and comparative genomic analyses to evaluate the possible "farm-to-fork" transmission of β-lactams resistant bacteria. Results showed that the percentage of ESBL strains in fecal E. coli was approximately 7% and increased slightly in the pork food chain: the 10% of ESBL E. coli isolated from carcasses and the 12.5% of isolates from fresh meat products. AmpC E. coli were found only in feces, carcasses, and fresh meat with a low prevalence. Results showed that of the 243 pigs followed along the entire food chain genetic similarities in E. coli isolated from farm-to-fork were found in only one pig (feces, carcasses and fresh meat). Frequent similarities were shown in resistant E. coli isolates from carcasses and fresh meat or fermented product (three pork food chain). Moreover, in one case, bacteria isolated from fresh meat and fermented product were genotypically similar. Concluding, direct transmission of β-lactams resistance from farm-to-fork is possible but not frequent. Further studies are needed to improve risk communication to consumers and access to clear and reliable information and health concerns on food.
Collapse
Affiliation(s)
- Martina Rega
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Laura Andriani
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Antonio Poeta
- Azienda Unità Sanitaria Locale (AUSL) sede Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Casadio
- Azienda Unità Sanitaria Locale (AUSL) sede Modena, Via S. Giovanni del cantone, 23 41121 Modena, Italy
| | - Giuseppe Diegoli
- Emilia-Romagna Region, Collective Prevention and Public Health Service, viale Aldo Moro 21, 40127 Bologna, Italy
| | - Silvia Bonardi
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Mauro Conter
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Cristina Bacci
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|
5
|
Herrera-Vázquez A, Arellano-Aranda R, Hernández-Cueto D, Rodríguez-Miranda E, López-Briones S, Hernández-Luna MA. Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse. Microorganisms 2023; 11:2065. [PMID: 37630625 PMCID: PMC10458685 DOI: 10.3390/microorganisms11082065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Food is often contaminated with Escherichia coli (E. coli) bacteria strains, which have been associated with different diseases, including urinary tract infections. The consumption of meat by humans is a potential route of transmission of antimicrobial resistance, and food-producing animals have been associated as a major reservoir of resistant bacterial strains. The aim of this study was to determine the presence of the E. coli strains producing the CNF-1 toxin in pig kidneys. Pig kidneys were collected from a Mexican slaughterhouse and classified according to their coloration into reddish kidneys (RK) and yellowish kidneys (YK). A tissue sample from each kidney was processed for histological analysis, the presence of E. coli was determined by conventional PCR assay, and the CNF-1 toxin was detected by both conventional PCR and Western blotting. Herein, an inflammatory cell infiltrate was found in all collected kidneys, regardless of macroscopic differences. Surprisingly, E. coli and the CNF-1 toxin were detected in all kidney samples. We clearly demonstrate contamination by CNF-1 toxin-producing E. coli in pork kidneys from a slaughterhouse, even in those without apparent damage. This suggests that pork may serve as a reservoir for pathogens, representing an important risk to human health.
Collapse
Affiliation(s)
- Arturo Herrera-Vázquez
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Rebeca Arellano-Aranda
- Department of Veterinary, Division of Life Sciences, University of Guanajuato, Campus Irapuato Salamanca, Guanajuato 36500, Mexico
| | - Daniel Hernández-Cueto
- Unit of Investigative Research on Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Esmeralda Rodríguez-Miranda
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Sergio López-Briones
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Marco Antonio Hernández-Luna
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| |
Collapse
|
6
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Lundstrom K, Barh D, Azevedo V, Sabri NA. Associations between Nutrigenomic Effects and Incidences of Microbial Resistance against Novel Antibiotics. Pharmaceuticals (Basel) 2023; 16:1093. [PMID: 37631008 PMCID: PMC10458141 DOI: 10.3390/ph16081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Nutrigenomics is the study of the impact of diets or nutrients on gene expression and phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics, etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information through altered gene expression and hence the overall function and traits of the organism. Dietary components and nutrients not only serve as a source of energy but also, through their interactions with genes, regulate gut microbiome composition, the production of metabolites, various biological processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic microorganisms has emerged as a major public health concern due to the presence of antimicrobial resistance genes in various food products. Recent evidence suggests a correlation between the regulation of genes and two-component and other signaling systems that drive antibiotic resistance in response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome antibiotic resistance against novel antibiotics. However, little progress has been made in this direction. In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance against novel antibiotics.
Collapse
Affiliation(s)
- Mohamed A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Sara A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Eslam M. Shehata
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Amr S. Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo P.O. Box 11566, Egypt;
| | | | - Debmalya Barh
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo P.O. Box 11566, Egypt
| |
Collapse
|
7
|
Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction. Antibiotics (Basel) 2023; 12:antibiotics12030595. [PMID: 36978463 PMCID: PMC10045043 DOI: 10.3390/antibiotics12030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Salmonella enterica subsp. enterica is a zoonotic bacterial pathogen that causes foodborne outbreaks in humans. Lytic bacteriophages to control Salmonella in food production are already being used in scientific studies and some are commercially available. However, phage application is still controversial. In addition to virulent phages, which are used in phage therapy and lyse the bacterial host, lysogenic phages coexist in the environment and can reside as prophages in the bacterial host. Therefore, information about Salmonella prophages is essential to understand successful phage therapy. In 100 Salmonella food isolates of the serovars Enteritidis and Typhimurium, we propagated prophages by oxidative stress. In isolates of the serovars Typhimurium and Enteritidis, 80% and 8% prophages could be activated, respectively. In the phage lysates from the serovar Typhimurium, the following antibiotic resistance genes or gene fragments were detected by PCR: sul1, sul2, blaTEM, strA and cmlA; however, no tetA,B,C, blaOXA, blaCMY, aadA1, dfr1,2 or cat were detected. In contrast, no resistance genes were amplified in the phage lysates of the serovar Enteritidis. None of the phage lysates was able to transduce phenotypic resistance to WT 14028s. Most of the prophage lysates isolated were able to infect the various Salmonella serovars tested. The high abundance of prophages in the genome of the serovar Typhimurium may counteract phage therapy through phage resistance and the development of hybrid phages.
Collapse
|
8
|
The Pork Food Chain as a Route of Transmission of Antimicrobial Resistant Escherichia coli: A Farm-to-Fork Perspective. Antibiotics (Basel) 2023; 12:antibiotics12020376. [PMID: 36830287 PMCID: PMC9952288 DOI: 10.3390/antibiotics12020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Antimicrobial resistance (AMR) is a public health risk that needs to be faced from a One Health perspective that includes humans, animals, and environmental health. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical phenomenon is related to Critically Important Antimicrobial (CIA) resistance. β-lactams antibiotics (cephalosporin of 3rd, 4th generation, carbapenem, monobactams, and penicillins), quinolones, aminoglycosides, polymyxin, and glycylcyclines were the CIAs chosen in this study. Samples derived from all the stages of the pork food production chain were collected, including pig feces, carcasses, and pork food products (fresh meat, fermented, and seasoned). Escherichia coli were isolated, and AMR and MDR profiles were evaluated. Enterobacterial Repetitive Intragenic Consensus (ERIC-PCR) was used to evaluate phylogenetic similarities. Data showed that 50% of phenotypical AMR observed in the entire pork food chain were related phylogenetically. The contamination of fresh meat, in half of the cases, was not directly related to contamination from feces or carcasses. Despite this, some similarities were found between feces and carcasses. In group analysis, phylogenetic similarities were detected in a 3/36 cluster (8.3%). Nevertheless, further studies are needed to improve consumer risk communication and access to clear and reliable information and health concerns on food labels.
Collapse
|
9
|
Carelli M, Griggio F, Mingoia M, Garofalo C, Milanović V, Pozzato N, Leoni F, Veschetti L, Malerba G, Sandri A, Patuzzo C, Simoni S, Lleo MM, Vignaroli C. Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR. Antibiotics (Basel) 2022; 11:antibiotics11121696. [PMID: 36551353 PMCID: PMC9774140 DOI: 10.3390/antibiotics11121696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The presence of carbapenemase-producing bacteria (CPB) in animal hosts and along the food chain may result in the development of reservoirs for human infections. Several CPB strains isolated from animals have been reported, suggesting that transmission and dissemination of the corresponding genes between humans and animals may occur. Animal and food samples have complex backgrounds that hinder the detection of CPB present in low concentrations by standard detection procedures. METHODS We evaluated the possibility of detecting blaKPC, blaVIM, and blaOXA-48-like carbapenemases in 286 animal and food samples (faeces from farm and companion animals, raw meat, bivalve molluscs) by culture-based and standard molecular methods and by ddPCR. RESULTS The proposed ddPCR managed to detect the target genes, also in samples resulting negative to standard methods. While the presence of blaKPC and blaVIM was detected in few samples (~3%), one third of the samples (n = 94/283) carried different variants of blaOXA-48-like genes. CONCLUSION A specific and sensitive method such as ddPCR could be suitable to evaluate the current veterinarian and environmental situation and to assess the dynamic transmission and persistence of CPB between animals and humans and vice versa.
Collapse
Affiliation(s)
- Maria Carelli
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Francesca Griggio
- Centro Piattaforme Tecnologiche, University of Verona, 37134 Verona, Italy
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Cristiana Garofalo
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Nicola Pozzato
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra, Italy
| | - Francesca Leoni
- Laboratorio Nazionale di Riferimento (LNR) per il Controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 60121 Ancona, Italy
| | - Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Angela Sandri
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Maria M. Lleo
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| |
Collapse
|
10
|
Rega M, Andriani L, Cavallo S, Bonilauri P, Bonardi S, Conter M, Carmosino I, Bacci C. Antimicrobial Resistant E. coli in Pork and Wild Boar Meat: A Risk to Consumers. Foods 2022; 11:foods11223662. [PMID: 36429254 PMCID: PMC9689484 DOI: 10.3390/foods11223662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial-resistant foodborne microorganisms may be transmitted from food producing animals to humans through the consumption of meat products. In this study, meat that was derived from farmed pigs and wild boars was analyzed and compared. Escherichia coli (E. coli) were isolated and tested phenotypically and genotypically for their resistance to quinolones, aminoglycosides and carbapenems. The co-presence of AMR-associated plasmid genes was also evaluated. A quinolone AMR phenotypic analysis showed 41.9% and 36.1% of resistant E. coli derived from pork and wild boars meat, respectively. A resistance to aminoglycosides was detected in the 6.6% of E. coli that was isolated from pork and in 1.8% of the wild boar meat isolates. No resistant profiles were detected for the carbapenems. The quinolone resistance genes were found in 58.3% of the phenotypically resistant pork E. coli and in 17.5% of the wild boar, thus showing low genotypic confirmation rates. The co-presence of the plasmid-related genes was observed only for the quinolones and aminoglycosides, but not for the carbapenems. Wild boar E. coli were the most capable to perform biofilm production when they were compared to pork E. coli. In conclusion, the contamination of pork and wild boar meat by AMR microorganisms could be a threat for consumers, especially if biofilm-producing strains colonize the surfaces and equipment that are used in the food industry.
Collapse
Affiliation(s)
- Martina Rega
- Food Hygiene and Inspection, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Laura Andriani
- Food Hygiene and Inspection, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Silvia Cavallo
- Food Hygiene and Inspection, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Pitagora, 2, 42124 Reggio Emilia, Italy
| | - Silvia Bonardi
- Food Hygiene and Inspection, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Mauro Conter
- Food Hygiene and Inspection, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-902683
| | - Ilaria Carmosino
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, via Emilio Diena, 16, 41122 Modena, Italy
| | - Cristina Bacci
- Food Hygiene and Inspection, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|