1
|
Kumar V, van Rensburg W, Snoep JL, Paradies HH, Borrageiro C, de Villiers C, Singh R, Joshi KB, Rautenbach M. Antimicrobial nano-assemblies of tryptocidine C, a tryptophan-rich cyclic decapeptide, from ethanolic solutions. Biochimie 2023; 204:22-32. [PMID: 36057373 DOI: 10.1016/j.biochi.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Tryptocidine C (TpcC), a Trp-rich cyclodecapeptide is a minor constituent in the antibiotic tyrothricin complex from Brevibacillus parabrevis. TpcC possesses a high tendency to oligomerise in aqueous solutions and dried TpcC forms distinct self-assembled nanoparticles. High-resolution scanning electron microscopy revealed the influence of different ethanol:water solvent systems on TpcC self-assembly, with the TpcC, dried from a high concentration in 15% ethanol, primarily assembling into small nanospheres with 24.3 nm diameter and 0.05 polydispersity. TpcC at 16 μM, near its CMC, formed a variety of structures such as small nanospheres, large dense nanospheroids and facetted 3-D-crystals, as well as sheets and coarse carpet-like structures which depended on ethanol concentration. Drying 16 μM TpcC from 75% ethanol resulted in highly facetted 3-D crystals, as well as small nanospheres, while those in 10% ethanol preparation had less defined facets. Drying from 20 to 50% ethanol led to polymorphic architectures with a few defined nanospheroids and various small nanoparticles, imbedded in carpet- and sheet-like structures. These polymorphic surface morphologies correlated with maintenance of fluorescence properties and the surface-derived antibacterial activity against Staphylococcus aureus over time, while there was a significant change in fluorescence and loss in activity in the 10% and 75% preparations where 3-D crystals were observed. This indicated that TpcC oligomerisation in solutions with 20-50% ethanol leads to metastable structures with a high propensity for release of antimicrobial moieties, while those leading to crystallisation limit active moieties release. TpcC nano-assemblies can find application in antimicrobial coatings, surface disinfectants, food packaging and wound healing materials.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Wilma van Rensburg
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands
| | - Henrich H Paradies
- Jacobs-University, Department of Chemistry and Life Science, Bremen, 30110, Germany
| | | | - Carmen de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ramesh Singh
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|