1
|
Bukhari MA, Qamash RA, Bulkhi RA, Bifari JA, Bakhsh OS, Hawsawi KO, Matuure EY, Sulaimani KA, Hakim AT, Mujahid MS. Biological studies of the activity of Manuka honey against Carbapenem-resistant Enterobacterales (CRE) bacteria. Saudi Med J 2024; 45:876-887. [PMID: 39218463 PMCID: PMC11376693 DOI: 10.15537/smj.2024.45.9.20240153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To evaluate the potency of Manuka honey UMF +15 against Carbapenem-resistant Enterobacterales (CRE). Bacterial resistance is a worldwide problem that is increasing year by year, especially Carbapenem resistance. Alternatives to antibiotics are needed to both reduce costs, and to reduce the spread of antibiotic resistance, with the ultimate goal of saving lives. METHODS The efficacy of Manuka honey UMF +15 was tested by 2 methods; Well diffusion assay and minimum bactericidal concentration (MBC) against twenty Carbapenem-resistant isolates which collected from Makkah city hospitals during three months of study from 1st of September 2023 up to 1st of December 2023. RESULTS The growth of all isolates of Carbapenem-resistant Enterobacterales (CRE) was severely inhibited by low concentrations of Manuka honey, affecting 25% of isolates at 15% and 75% of isolates at 18% of Manuka honey. In addition, using the honey at different concentrations in a well diffusion assay resulted, as expected, in a variable zone diameter, ranging from large zones(14mm) to small zones (2 mm) according to the concentration of the honey. CONCLUSION This study shows the remarkable antibacterial activity of Manuka honey and suggests that this natural remedy might be used in the future as an alternative treatment option against Carbapenem-resistant Enterobacterales (CRE); however, further clinical trials should be performed to corroborate our initial findings.
Collapse
Affiliation(s)
- Mamdouh A Bukhari
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Razaz A Qamash
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Rasha A Bulkhi
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Jehad A Bifari
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Omar S Bakhsh
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Khalid O Hawsawi
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Ehab Y Matuure
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Kamil A Sulaimani
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Ashwaq T Hakim
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| | - Maher S Mujahid
- From the Department of Microbiology,The Regional Laboratory. Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Lanh PT, Duong BT, Thu HT, Hoa NT, Quyen DV. Comprehensive analysis of the microbiome in Apis cerana honey highlights honey as a potential source for the isolation of beneficial bacterial strains. PeerJ 2024; 12:e17157. [PMID: 38560453 PMCID: PMC10981410 DOI: 10.7717/peerj.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.
Collapse
Affiliation(s)
- Pham T. Lanh
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui T.T. Duong
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T. Thu
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen T. Hoa
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
3
|
Guedes GMDM, Freitas AS, Pinheiro RM, Pereira VC, Melgarejo CMA, de Araujo ES, Ribeiro KVC, Bandeira SP, Cordeiro RDA, Rocha MFG, Sidrim JJC, Castelo-Branco DDSCM. Antibiofilm activity of promethazine, deferiprone, and Manuka honey in an ex vivo wound model. Lett Appl Microbiol 2023; 76:ovad119. [PMID: 37791895 DOI: 10.1093/lambio/ovad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rodrigo Machado Pinheiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Emanuela Silva de Araujo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Késia Veras Costa Ribeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Avenida Dr. Silas Munguba, 1700 - Itaperi - CEP 60714-903, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
4
|
Chemometric classification of chestnut honeys from different regions in Turkey based on their phenolic compositions and biological activities. Food Chem 2023; 415:135727. [PMID: 36871408 DOI: 10.1016/j.foodchem.2023.135727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The objective of this study was to investigate the phenolic composition and biological properties of chestnut honeys of 41 stations in Turkey's the Black Sea and Marmara regions. A total of sixteen phenolic compounds and organic acids were detected using HPLC-DAD and levulinic, gallic, protocatechuic, vanilic, trans-cinnamic acids and (4-hydroxyphenyl) ethanol were identified in all studied chestnut honeys. Antioxidant activities were measured by ABTS•+, β-carotene-linoleic acid, CUPRAC, DPPH•, and metal chelating assays. Antimicrobial activities were carried out against gram positive, gram negative bacteria and Candida species using well diffusion test. Anti-inflammatory activities were evaluated against COX-1 and COX-2 whereas enzyme inhibitory activities were assessed on AChE, BChE, urease, and tyrosinase. The chemometric classification of chestnut honeys were carried out using PCA and HCA and it was seen that some phenolic compounds contributed significantly to the classification of chestnut honeys from various geographical origin.
Collapse
|
5
|
Microbial Community Structure among Honey Samples of Different Pollen Origin. Antibiotics (Basel) 2023; 12:antibiotics12010101. [PMID: 36671302 PMCID: PMC9855004 DOI: 10.3390/antibiotics12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Honey's antibacterial activity has been recently linked to the inhibitory effects of honey microbiota against a range of foodborne and human pathogens. In the current study, the microbial community structure of honey samples exerting pronounced antimicrobial activity was examined. The honey samples were obtained from different geographical locations in Greece and had diverse pollen origin (fir, cotton, fir-oak, and Arbutus unedo honeys). Identification of honey microbiota was performed by high-throughput amplicon sequencing analysis, detecting 335 distinct taxa in the analyzed samples. Regarding ecological indices, the fir and cotton honeys possessed greater diversity than the fir-oak and Arbutus unedo ones. Lactobacillus kunkeei (basionym of Apilactobacillus kun-keei) was the predominant taxon in the fir honey examined. Lactobacillus spp. appeared to be favored in honey from fir-originated pollen and nectar since lactobacilli were more pronounced in fir compared to fir-oak honey. Pseudomonas, Streptococcus, Lysobacter and Meiothermus were the predominant taxa in cotton honey, whereas Lonsdalea, the causing agent of acute oak decline, and Zymobacter, an osmotolerant facultative anaerobic fermenter, were the dominant taxa in fir-oak honey. Moreover, methylotrophic bacteria represented 1.3-3% of the total relative abundance, independently of the geographical and pollen origin, indicating that methylotrophy plays an important role in honeybee ecology and functionality. A total of 14 taxa were identified in all examined honey samples, including bacilli/anoxybacilli, paracocci, lysobacters, pseudomonads, and sphingomonads. It is concluded that microbial constituents of the honey samples examined were native gut microbiota of melliferous bees and microbiota of their flowering plants, including both beneficial bacteria, such as potential probiotic strains, and animal and plant pathogens, e.g., Staphylococcus spp. and Lonsdalea spp. Further experimentation will elucidate aspects of potential application of microbial bioindicators in identifying the authenticity of honey and honeybee-derived products.
Collapse
|
6
|
Anti-Inflammatory and Antibacterial Effects and Mode of Action of Greek Arbutus, Chestnut, and Fir Honey in Mouse Models of Inflammation and Sepsis. Microorganisms 2022; 10:microorganisms10122374. [PMID: 36557628 PMCID: PMC9784341 DOI: 10.3390/microorganisms10122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Honey has been shown to possess anti-inflammatory and bactericidal properties that may be useful for the prevention and treatment of infections as well as of acute and chronic inflammatory diseases. The antimicrobial potency of honey could be attributed to its physicochemical characteristics combined with the presence of certain compounds, such as hydrogen peroxide and polyphenols. Honey's bacteriostatic or bactericidal capacity varies depending on its composition and the bacterial type of each infection. Nevertheless, not all honey samples possess anti-inflammatory or antibacterial properties and their mechanism of action has not been clearly elucidated. Objectives: We therefore investigated the anti-inflammatory properties of three different honey samples that derived from different geographical areas of Greece and different botanical origins, namely, arbutus, chestnut, and fir; they were compared to manuka honey, previously known for its anti-inflammatory and antibacterial activity. Materials and Methods: To test the anti-inflammatory activity of the different samples, we utilized the in vivo model of LPS-driven inflammation, which induces septic shock without the presence of pathogens. To evaluate the antibacterial action of the same honey preparations, we utilized the cecal-slurry-induced peritonitis model in mice. Since acute inflammation and sepsis reduce the biotransformation capacity of the liver, the expression of key enzymes in the process was also measured. Results: The administration of all Greek honey samples to LPS-stimulated mice revealed a potent anti-inflammatory activity by suppressing the TNFα serum levels and the expression of TNFα and iNOS in the liver at levels comparable to those of the manuka honey, but they had no effect on IL-6 or IL-1β. It was shown that the LPS-induced suppression of CYP1A1 in the liver was reversed by Epirus and Crete fir honey, while, correspondingly, the suppression of CYP2B10 in the liver was reversed by Evros chestnut and Epirus fir honey. The effect of the same honey samples in polymicrobial peritonitis in mice was also evaluated. Even though no effect was observed on the disease severity or peritoneal bacterial load, the bacterial load in the liver was reduced in mice treated with Evros chestnut, Epiros fir, and Crete fir, while the bacterial load in the lungs was reduced in Epirus arbutus, Crete fir, and manuka honey-treated mice. Conclusion: Our findings suggest that these specific Greek honey samples possess distinct anti-inflammatory and antibacterial properties, as evidenced by the reduced production of pro-inflammatory mediators and the impaired translocation of bacteria to tissues in septic mice. Their mode of action was comparable or more potent to those of manuka honey.
Collapse
|
7
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Vaou N, Stavropoulou E, Voidarou C(C, Tsakris Z, Rozos G, Tsigalou C, Bezirtzoglou E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics (Basel) 2022; 11:antibiotics11081014. [PMID: 36009883 PMCID: PMC9404952 DOI: 10.3390/antibiotics11081014] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
It is accepted that the medicinal use of complex mixtures of plant-derived bioactive compounds is more effective than purified bioactive compounds due to beneficial combination interactions. However, synergy and antagonism are very difficult to study in a meticulous fashion since most established methods were designed to reduce the complexity of mixtures and identify single bioactive compounds. This study represents a critical review of the current scientific literature on the combined effects of plant-derived extracts/bioactive compounds. A particular emphasis is provided on the identification of antimicrobial synergistic or antagonistic combinations using recent metabolomics methods and elucidation of approaches identifying potential mechanisms that underlie their interactions. Proven examples of synergistic/antagonistic antimicrobial activity of bioactive compounds are also discussed. The focus is also put on the current challenges, difficulties, and problems that need to be overcome and future perspectives surrounding combination effects. The utilization of bioactive compounds from medicinal plant extracts as appropriate antimicrobials is important and needs to be facilitated by means of new metabolomics technologies to discover the most effective combinations among them. Understanding the nature of the interactions between medicinal plant-derived bioactive compounds will result in the development of new combination antimicrobial therapies.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); or (E.S.)
| | - Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
- Correspondence: (N.V.); or (E.S.)
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Zacharias Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Rozos
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
9
|
Kanapathy S, Obande GA, Chuah C, Shueb RH, Yean CY, Banga Singh KK. Sequence-Specific Electrochemical Genosensor for Rapid Detection of blaOXA-51-like Gene in Acinetobacter baumannii. Microorganisms 2022; 10:1413. [PMID: 35889132 PMCID: PMC9322073 DOI: 10.3390/microorganisms10071413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) are phenotypically indistinguishable from the Acinetobacter calcoaceticus−A. baumannii (ACB) complex members using routine laboratory methods. Early diagnosis plays an important role in controlling A. baumannii infections and this could be assisted by the development of a rapid, yet sensitive diagnostic test. In this study, we developed an enzyme-based electrochemical genosensor for asymmetric PCR (aPCR) amplicon detection of the blaOXA-51-like gene in A. baumannii. A. baumanniiblaOXA-51-like gene PCR primers were designed, having the reverse primer modified at the 5′ end with FAM. A blaOXA-51-like gene sequence-specific biotin labelled capture probe was designed and immobilized using a synthetic oligomer (FAM-labelled) deposited on the working electrode of a streptavidin-modified, screen-printed carbon electrode (SPCE). The zot gene was used as an internal control with biotin and FAM labelled as forward and reverse primers, respectively. The blaOXA-51-like gene was amplified using asymmetric PCR (aPCR) to generate single-stranded amplicons that were detected using the designed SPCE. The amperometric current response was detected with a peroxidase-conjugated, anti-fluorescein antibody. The assay was tested using reference and clinical A. baumannii strains and other nosocomial bacteria. The analytical sensitivity of the assay at the genomic level and bacterial cell level was 0.5 pg/mL (1.443 µA) and 103 CFU/mL, respectively. The assay was 100% specific and sensitive for A. baumannii. Based on accelerated stability performance, the developed genosensor was stable for 1.6 years when stored at 4 °C and up to 28 days at >25 °C. The developed electrochemical genosensor is specific and sensitive and could be useful for rapid, accurate diagnosis of A. baumannii infections even in temperate regions.
Collapse
Affiliation(s)
- Swarnaletchumi Kanapathy
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Godwin Attah Obande
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia 950101, Nasarawa State, Nigeria;
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
- Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| |
Collapse
|