1
|
Cheh-Oh N, Ungthammakhun C, Changpradub D, Santimaleeworagun W. The Mortality of Colistin Monotherapy vs. Colistin-Sulbactam for Carbapenem-Resistant Acinetobacter baumannii Pneumonia: A Propensity Score Analysis. Infect Chemother 2025; 57:138-147. [PMID: 40183660 PMCID: PMC11972904 DOI: 10.3947/ic.2024.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND This study compared the mortality rates within 30 days of 2 different doses of sulbactam (6 g and 9-12 g daily) when used in colistin (COL)-based treatment regimens and COL monotherapy for carbapenem-resistant Acinetobacter baumannii (CRAB). MATERIALS AND METHODS This retrospective cohort study included 234 participants diagnosed with severe pneumonia due to CRAB infection at Phramongkutklao Hospital, Thailand, from July 1, 2011, to April 30, 2023. Participants were categorized into three groups: COL monotherapy, COL with 6 g of sulbactam daily (COL+S6g), and COL with 9-12 g of sulbactam daily (COL+SHD). Following the exclusion of patients with renal impairment (serum creatinine ≥1.5 mg/dl), a 1:2 propensity score (PS) matching was used to ensure comparable groups, with the COL group designated as the control. The matching variables included age, APACHE II scores, serum creatinine, intensive care units admission, and bacteremia. The number of participants in each group was as follows: 19 in COL, 32 in COL+S6g, and 38 in COL+SHD. The primary outcomes assessed were all-cause mortality rates at 7, 14, and 30 days. Kaplan-Meier survival curves and the Log-rank test were used to evaluate differences between groups, while multivariate Cox regression models were applied to determine the impact of treatment regimens. RESULTS The unmatching PS analysis indicated that the COL+SHD regimen significantly reduces mortality compared to the COL regimen; hazard ratios (HR) were 0.18 (95% confidence interval [CI], 0.06-0.55) for 7-day mortality and 0.53 (95% CI,-0.29-0.97) for 30-day mortality. In addition, the COL+SHD regimen also lowered mortality more than the COL+S6g regimen within 7 days (HR, 0.29; 95% CI, 0.11-0.75). After PS matching, the COL+SHD regimen significantly reduced 7-day mortality compared to the COL regimen (adjusted HR, 0.24; 95% CI, -0.07-0.82). However, COL+S6g did not differ in mortality from either COL+SHD or COL for 7-day mortality. At 14 days and 30 days, there were no significant regimens to reduce mortality. CONCLUSION Combining COL+SHD effectively reduced death in 7 days from severe pneumonia in CRAB infection treatment.
Collapse
Affiliation(s)
- Nadia Cheh-Oh
- College of Pharmacotherapy Thailand, Nonthaburi, Thailand
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chutchawan Ungthammakhun
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmaceutical Care, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom, Thailand.
| |
Collapse
|
2
|
Ungthammakhun C, Vasikasin V, Simsiriporn W, Juntanawiwat P, Changpradub D. Effect of colistin combined with sulbactam: 9 g versus 12 g per day on mortality in the treatment of carbapenems resistant Acinetobacter baumannii pneumonia: A randomized controlled trial. Int J Infect Dis 2024; 149:107267. [PMID: 39423948 DOI: 10.1016/j.ijid.2024.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The current treatment recommendation involves administering a high dose of sulbactam alongside at least one additional agent. However, there remains a lack of data regarding the optimal dosage of sulbactam. We investigated whether administering sulbactam at a dosage of 12 g/day decreases the mortality rate among patients with CRAB pneumonia compared to 9 g/day. METHODS The study was an open-label, superiority, randomized controlled trial conducted at Phramongkutklao Hospital between September 2019 and September 2023 in patients diagnosed with CRAB. Participants were randomly assigned to receive a combination of colistin with either 9 or 12 g/day of sulbactam. The primary endpoint was the all-cause mortality rate at 28 days postrandomization. RESULTS Among the 138 participants, there was a trend towards a lower mortality rate in the 12 g/day group (59.4% vs. 47.8%; P = 0.158). After adjusting for factors associated with mortality, a lower mortality was observed in the 12 g/day group (adjusted HR 0.54 [95% CI 0.33-0.87]; P = 0.0110). The microbiological cure rate at day 7 was higher in the 12 g/day group (73.2% vs. 89.4%; P = 0.02). CONCLUSIONS Colistin in combination with sulbactam at a dosage of 12 g/day may improve mortality compared to 9 g/day.
Collapse
Affiliation(s)
- Chutchawan Ungthammakhun
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Vasin Vasikasin
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Waristha Simsiriporn
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Piraporn Juntanawiwat
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| |
Collapse
|
3
|
Yu J, Zhang B, Yang Y, Dou W, Li Y, Yang A, Ruan X, Zuo W, Zhang B. A retrospective study of the efficacy of sulbactam in the treatment of patients with extensively drug-resistant Acinetobacter baumannii infections. Infection 2024; 52:2445-2454. [PMID: 39042327 PMCID: PMC11621167 DOI: 10.1007/s15010-024-02307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Sulbactam (SBT) is one of the most significant treatments for patients with extensively drug-resistant Acinetobacter baumannii (XDR-AB). However, the efficacy and safety of SBT and its high dose regimen has not been well documented. This retrospective study aimed to assess the efficacy and safety of SBT-based treatment, particularly at high-dose (≥ 6 g/day), for XDR-AB infection. METHOD A total of 52 XDR-AB infected patients treated with intravenous SBT at Peking Union Medical College Hospital were included. The primary outcome was 28-day all-cause mortality, while the secondary outcome was 14-day clinical response and the time of response. The formulation of SBT in our study is 0.5 g per vial. RESULTS Among the patients, the 28-day all-cause mortality rate was 36.5% (19/52), and the favorable 14-day clinical response rate was 59.6% (31/52). The 28-day mortality was independently associated coinfection with gram-positive bacteria (GPB) and a shorter duration of therapy. Patients with intracranial infection might have a longer survival time. A favorable 14-day clinical response was associated with the dose of SBT, and a longer treatment duration. However, the higher creatinine clearance (CrCl) associated with a worse clincal response. In addition, a higher SBT dosage was significantly correlated with a shorter time to clinical response. No adverse effects related were reported. CONCLUSION The single-agent formulation of SBT emerges as a promising alternative for the treatment of XDR-AB infection, such as intracranial infection, particularly at high doses (≥ 6 g/day). Besides, longer duration of treatment correlates with higher survival rate and better favorable clinical response. Higher CrCl negatively correlates with favorable clinical response.
Collapse
Affiliation(s)
- Jiaxin Yu
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Baoshuang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Yang
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Wei Dou
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yuliu Li
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Anji Yang
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Ruan
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Zuo
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Bo Zhang
- Department of pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Islam MM, Jung DE, Shin WS, Oh MH. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024; 13:1049. [PMID: 39770308 PMCID: PMC11728550 DOI: 10.3390/pathogens13121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant Acinetobacter baumannii (A. baumannii) is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant A. baumannii, serving as the last line of defense. However, reports of colistin-resistant strains of A. baumannii have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens. To resist colistin, A. baumannii has developed several mechanisms. These include the loss of outer membrane lipopolysaccharides (LPSs) due to mutation of LPS biosynthetic genes, modification of lipid A (a constituent of LPSs) structure through the addition of phosphoethanolamine (PEtN) moieties to the lipid A component by overexpression of chromosomal pmrCAB operon genes and eptA gene, or acquisition of plasmid-encoded mcr genes through horizontal gene transfer. Other resistance mechanisms involve alterations of outer membrane permeability through porins, the expulsion of colistin by efflux pumps, and heteroresistance. In response to the rising threat of colistin-resistant A. baumannii, researchers have developed various treatment strategies, including antibiotic combination therapy, adjuvants to potentiate antibiotic activity, repurposing existing drugs, antimicrobial peptides, nanotechnology, photodynamic therapy, CRISPR/Cas, and phage therapy. While many of these strategies have shown promise in vitro and in vivo, further clinical trials are necessary to ensure their efficacy and widen their clinical applications. Ongoing research is essential for identifying the most effective therapeutic strategies to manage colistin-resistant A. baumannii. This review explores the genetic mechanisms underlying colistin resistance and assesses potential treatment options for this challenging pathogen.
Collapse
Affiliation(s)
- Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Da Eun Jung
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Man Hwan Oh
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Shein AMS, Hongsing P, Smith OK, Phattharapornjaroen P, Miyanaga K, Cui L, Ishikawa H, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Pletzer D, Higgins PG, Abe S, Wannigama DL. Current and novel therapies for management of Acinetobacter baumannii-associated pneumonia. Crit Rev Microbiol 2024:1-22. [PMID: 38949254 DOI: 10.1080/1040841x.2024.2369948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - O'Rorke Kevin Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Phatthranit Phattharapornjaroen
- Department of Emergency Medicine, Center of Excellence, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Surgery, Sahlgrenska Academy, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
6
|
Rafailidis P, Panagopoulos P, Koutserimpas C, Samonis G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:261. [PMID: 38534696 DOI: 10.3390/antibiotics13030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The treatment of Acinetobacter baumannii infections remains a challenge for physicians worldwide in the 21st century. The bacterium possesses a multitude of mechanisms to escape the human immune system. The consequences of A. baumannii infections on morbidity and mortality, as well on financial resources, remain dire. Furthermore, A. baumannii superinfections have also occurred during the COVID-19 pandemic. While prevention is important, the antibiotic armamentarium remains the most essential factor for the treatment of these infections. The main problem is the notorious resistance profile (including resistance to carbapenems and colistin) that this bacterium exhibits. While newer beta lactam/beta-lactamase inhibitors have entered clinical practice, with excellent results against various infections due to Enterobacteriaceae, their contribution against A. baumannii infections is almost absent. Hence, we have to resort to at least one of the following, sulbactam, polymyxins E or B, tigecycline or aminoglycosides, against multidrug-resistant (MDR) and extensively drug-resistant (XDR) A. baumannii infections. Furthermore, the notable addition of cefiderocol in the fight against A. baumannii infections represents a useful addition. We present herein the existing information from the last decade regarding therapeutic advances against MDR/XDR A. baumannii infections.
Collapse
Affiliation(s)
- Petros Rafailidis
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Periklis Panagopoulos
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, 115 25 Athens, Greece
| | - George Samonis
- Department of Oncology, Metropolitan Hospital, 185 47 Athens, Greece
- Department of Medicine, University of Crete, 715 00 Heraklion, Greece
| |
Collapse
|
7
|
Bouza E, Muñoz P, Burillo A. How to treat severe Acinetobacter baumannii infections. Curr Opin Infect Dis 2023; 36:596-608. [PMID: 37930071 DOI: 10.1097/qco.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW To update the management of severe Acinetobacter baumannii infections (ABI), particularly those caused by multi-resistant isolates. RECENT FINDINGS The in vitro activity of the various antimicrobial agents potentially helpful in treating ABI is highly variable and has progressively decreased for many of them, limiting current therapeutic options. The combination of more than one drug is still advisable in most circumstances. Ideally, two active first-line drugs should be used. Alternatively, a first-line and a second-line drug and, if this is not possible, two or more second-line drugs in combination. The emergence of new agents such as Cefiderocol, the combination of Sulbactam and Durlobactam, and the new Tetracyclines offer therapeutic options that need to be supported by clinical evidence. SUMMARY The apparent limitations in treating infections caused by this bacterium, the rapid development of resistance, and the serious underlying situation in most cases invite the search for alternatives to antibiotic treatment, the most promising of which seems to be bacteriophage therapy.
Collapse
Affiliation(s)
- Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
| |
Collapse
|
8
|
Jalali Y, Liptáková A, Jalali M, Payer J. Moving toward Extensively Drug-Resistant: Four-Year Antimicrobial Resistance Trends of Acinetobacter baumannii from the Largest Department of Internal Medicine in Slovakia. Antibiotics (Basel) 2023; 12:1200. [PMID: 37508296 PMCID: PMC10376473 DOI: 10.3390/antibiotics12071200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A. baumannii imposes a great burden on medical systems worldwide. Surveillance of trends of antibiotic resistance provides a great deal of information needed for antimicrobial stewardship programmes nationwide. Clinical data from long-term, continuous surveillance on trends of antibiotic resistance of A. baumannii in Slovakia is missing. One hundred and forty-nine samples of A. baumannii were isolated over a period of four years. A panel of 19 antibiotics from seven antibiotic categories were tested for the bacterium's susceptibility. Resistance results were evaluated, and the significance of patterns was estimated using simple linear regression analysis. All isolates were more than 85% resistant to at least 13 out of the 19 tested antibiotics. A significant rise in resistance was recorded for aminoglycosides and imipenem from 2019 to 2022. Colistin and ampicillin-sulbactam have been the only antibiotics maintaining more than 80% efficacy on the bacterium to date. A significant rise in extensively drug-resistant (XDR) strains among carbapenem-resistant (CR) isolates has been recorded. Multidrug-resistance (MDR) among all A. baumannii isolates and XDR among CR strains of the bacterium have risen significantly in the last four years.
Collapse
Affiliation(s)
- Yashar Jalali
- Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia
| | - Adriána Liptáková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Monika Jalali
- Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia
| | - Juraj Payer
- Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia
| |
Collapse
|
9
|
Vasikasin V, Panuvatvanich B, Rawson TM, Holmes AH, Nasomsong W. Towards optimizing carbapenem selection in stewardship strategies: a prospective propensity score-matched study of ertapenem versus class 2 carbapenems for empirical treatment of third-generation cephalosporin-resistant Enterobacterales bacteraemia. J Antimicrob Chemother 2023; 78:1748-1756. [PMID: 37252945 DOI: 10.1093/jac/dkad165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Third-generation cephalosporin-resistant Enterobacterales (3GCRE) are increasing in prevalence, leading to greater carbapenem consumption. Selecting ertapenem has been proposed as a strategy to reduce carbapenem resistance development. However, there are limited data for the efficacy of empirical ertapenem for 3GCRE bacteraemia. OBJECTIVES To compare the efficacy of empirical ertapenem and class 2 carbapenems for the treatment of 3GCRE bacteraemia. METHODS A prospective non-inferiority observational cohort study was performed from May 2019 to December 2021. Adult patients with monomicrobial 3GCRE bacteraemia receiving carbapenems within 24 h were included at two hospitals in Thailand. Propensity scores were used to control for confounding, and sensitivity analyses were performed in several subgroups. The primary outcome was 30 day mortality. This study is registered with clinicaltrials.gov (NCT03925402). RESULTS Empirical carbapenems were prescribed in 427/1032 (41%) patients with 3GCRE bacteraemia, of whom 221 received ertapenem and 206 received class 2 carbapenems. One-to-one propensity score matching resulted in 94 pairs. Escherichia coli was identified in 151 (80%) of cases. All patients had underlying comorbidities. Septic shock and respiratory failure were the presenting syndromes in 46 (24%) and 33 (18%) patients, respectively. The overall 30 day mortality rate was 26/188 (13.8%). Ertapenem was non-inferior to class 2 carbapenems in 30 day mortality (12.8% versus 14.9%; mean difference -0.02; 95% CI: -0.12 to 0.08). Sensitivity analyses were consistent regardless of aetiological pathogens, septic shock, source of infection, nosocomial acquisition, lactate levels or albumin levels. CONCLUSIONS Ertapenem may be of comparable efficacy to class 2 carbapenems in the empirical treatment of 3GCRE bacteraemia.
Collapse
Affiliation(s)
- Vasin Vasikasin
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, Acton, London, W12 0NN, UK
- Department of Internal Medicine, Phramongkutklao Hospital, 315 Ratchavithi Rd, Ratchadhevi, Bangkok, 10400, Thailand
| | - Bawornnan Panuvatvanich
- Department of Internal Medicine, Phramongkutklao Hospital, 315 Ratchavithi Rd, Ratchadhevi, Bangkok, 10400, Thailand
| | - Timothy M Rawson
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, Acton, London, W12 0NN, UK
| | - Alison H Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, Acton, London, W12 0NN, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7TX, UK
| | - Worapong Nasomsong
- Department of Internal Medicine, Phramongkutklao Hospital, 315 Ratchavithi Rd, Ratchadhevi, Bangkok, 10400, Thailand
| |
Collapse
|