1
|
Denissen J, Havenga B, Reyneke B, Khan S, Khan W. Comparing antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa from environmental and clinical settings. Heliyon 2024; 10:e30215. [PMID: 38720709 PMCID: PMC11076977 DOI: 10.1016/j.heliyon.2024.e30215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa, isolated from water sources collected in informal settlements, were compared to clinical counterparts. Cluster analysis using repetitive extragenic palindromic sequence-based polymerase chain reaction (REP-PCR) indicated that, for each respective species, low genetic relatedness was observed between most of the clinical and environmental isolates, with only one clinical P. aeruginosa (PAO1) and one clinical K. pneumoniae (P2) exhibiting high genetic similarity to the environmental strains. Based on the antibiograms, the clinical E. faecium Ef CD1 was extensively drug resistant (XDR); all K. pneumoniae isolates (n = 12) (except K. pneumoniae ATCC 13883) were multidrug resistant (MDR), while the P. aeruginosa (n = 16) isolates exhibited higher susceptibility profiles. The tetM gene (tetracycline resistance) was identified in 47.4 % (n = 6 environmental; n = 3 clinical) of the E. faecium isolates, while the blaKPC gene (carbapenem resistance) was detected in 52.6 % (n = 7 environmental; n = 3 clinical) and 15.4 % (n = 2 environmental) of the E. faecium and K. pneumoniae isolates, respectively. The E. faecium isolates were predominantly poor biofilm formers, the K. pneumoniae isolates were moderate biofilm formers, while the P. aeruginosa isolates were strong biofilm formers. All E. faecium and K. pneumoniae isolates were gamma (γ)-haemolytic, non-gelatinase producing (E. faecium only), and non-hypermucoviscous (K. pneumoniae only), while the P. aeruginosa isolates exhibited beta (β)-haemolysis and produced gelatinase. The fimH (type 1 fimbriae adhesion) and ugE (uridine diphosphate galacturonate 4-epimerase synthesis) virulence genes were detected in the K. pneumoniae isolates, while the P. aeruginosa isolates possessed the phzM (phenazine production) and algD (alginate biosynthesis) genes. Similarities in antibiotic resistance and virulence profiles of environmental and clinical E. faecium, K. pneumoniae, and P. aeruginosa, thus highlights the potential health risks posed by using environmental water sources for daily water needs in low-and-middle-income countries.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
2
|
Geissler M, Schröttner P, Oertel R, Dumke R. Enterococci, Van Gene-Carrying Enterococci, and Vancomycin Concentrations in the Influent of a Wastewater Treatment Plant in Southeast Germany. Microorganisms 2024; 12:149. [PMID: 38257976 PMCID: PMC10819932 DOI: 10.3390/microorganisms12010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vancomycin-resistant (VR) Enterococcus spp. can be detected in high concentrations in wastewaters and pose a risk to public health. During a one-year study (September 2022-August 2023), 24 h composite raw wastewater samples (n = 192) of a municipal wastewater treatment plant were investigated for cultivable enterococci. After growth on Slanetz-Bartley agar (SBA), a mean concentration of 29,736 ± 9919 cfu/mL was calculated. Using MALDI-TOF MS to characterize randomly picked colonies (n = 576), the most common species were found to be Enterococcus faecium (72.6%), E. hirae (13.7%), and E. faecalis (8.0%). Parallel incubation of wastewater samples on SBA and VRESelect agar resulted in a mean rate of VR enterococci of 2.0 ± 1.5%. All the tested strains grown on the VRESelect agar (n = 172) were E. faecium and carried the vanA (54.6%) or vanB gene (45.4%) with limited sequence differences. In susceptibility experiments, these isolates showed a high-level resistance to vancomycin (>256 µg/mL). Concentration of vancomycin was determined in 93.7% of 112 wastewater samples (mean: 123.1 ± 64.0 ng/L) and varied between below 100 ng/L (the detection limit) and 246.6 ng/L. A correlation between the concentration of vancomycin and the rate of VR strains among the total enterococci could not be found. The combination of incubation of samples on SBA and a commercial vancomycin-containing agar applied in clinical microbiology with a multiplex PCR for detection of van genes is an easy-to-use tool to quantify and characterize VR Enterococcus spp. in water samples.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| | - Percy Schröttner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| |
Collapse
|
3
|
Kim D, Pérez-Carrascal OM, DeSousa C, Jung DK, Bohley S, Wijaya L, Trang K, Khoury S, Shapira M. Microbiome remodeling through bacterial competition and host behavior enables rapid adaptation to environmental toxins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545768. [PMID: 37646003 PMCID: PMC10462140 DOI: 10.1101/2023.06.21.545768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Human activity is altering the environment in a rapid pace, challenging the adaptive capacities of genetic variation within animal populations. Animals also harbor extensive gut microbiomes, which play diverse roles in host health and fitness and may help expanding host capabilities. The unprecedented scale of human usage of xenobiotics and contamination with environmental toxins describes one challenge against which bacteria with their immense biochemical diversity would be useful, by increasing detoxification capacities. To explore the potential of bacteria-assisted rapid adaptation, we used Caenorhabditis elegans worms harboring a defined microbiome, and neomycin as a model toxin, harmful for the worm host and neutralized to different extents by some microbiome members. Worms raised in the presence of neomycin showed delayed development and decreased survival but were protected when colonized by neomycin-resistant members of the microbiome. Two distinct mechanisms facilitated this protection: gut enrichment driven by altered bacterial competition for the strain best capable of modifying neomycin; and host avoidance behavior, which depended on the conserved JNK homolog KGB-1, enabling preference and acquisition of neomycin-protective bacteria. We further tested the consequences of adaptation, considering that enrichment for protective strains may represent dysbiosis. We found that neomycin-adapted gut microbiomes caused increased susceptibility to infection as well as an increase in gut lipid storage, suggesting metabolic remodeling. Our proof-of-concept experiments support the feasibility of bacteria-assisted host adaptation and suggest that it may be prevalent. The results also highlight trade-offs between toxin adaptation and other traits of fitness.
Collapse
Affiliation(s)
- Dan Kim
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Catherin DeSousa
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Seneca Bohley
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lila Wijaya
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Sarah Khoury
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Tao S, Zhou D, Chen H, Li N, Zheng L, Fang Y, Xu Y, Jiang Q, Liang W. Analysis of genetic structure and function of clustered regularly interspaced short palindromic repeats loci in 110 Enterococcus strains. Front Microbiol 2023; 14:1177841. [PMID: 37168121 PMCID: PMC10165109 DOI: 10.3389/fmicb.2023.1177841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune system involved in specific defenses against the invasion of foreign mobile genetic elements, such as plasmids and phages. This study aims to analyze the gene structure and to explore the function of the CRISPR system in the Enterococcus genome, especially with regard to drug resistance. The whole genome information of 110 enterococci was downloaded from the NCBI database to analyze the distribution and the structure of the CRISPR-Cas system including the Cas gene, repeat sequences, and spacer sequence of the CRISPR-Cas system by bioinformatics methods, and to find drug resistance-related genes and analyze the relationship between them and the CRISPR-Cas system. Multilocus sequence typing (MLST) of enterococci was performed against the reference MLST database. Information on the drug resistance of Enterococcus was retrieved from the CARD database, and its relationship to the presence or absence of CRISPR was statistically analyzed. Among the 110 Enterococcus strains, 39 strains (35.45%) contained a complete CRISPR-Cas system, 87 CRISPR arrays were identified, and 62 strains contained Cas gene clusters. The CRISPR system in the Enterococcus genome was mainly type II-A (59.68%), followed by type II-C (33.87%). The phylogenetic analysis of the cas1 gene sequence was basically consistent with the typing of the CRISPR-Cas system. Of the 74 strains included in the study for MLST typing, only 19 (25.68%) were related to CRISPR-Cas typing, while the majority of the strains (74.32%) of MLST typing were associated with the untyped CRISPR system. Additionally, the CRISPR-Cas system may only be related to the carrying rate of some drug-resistant genes and the drug-resistant phenotype. In conclusion, the distribution of the enterococcus CRISPR-Cas system varies greatly among different species and the presence of CRISPR loci reduces the horizontal transfer of some drug resistance genes.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Dongdong Zhou
- Department of General Medicine, Ningbo First Hospital, Ningbo, China
| | - Huimin Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Lin Zheng
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Qi Jiang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
- *Correspondence: Qi Jiang,
| | - Wei Liang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
- Wei Liang,
| |
Collapse
|
5
|
Cinthi M, Coccitto SN, Morroni G, D’Achille G, Brenciani A, Giovanetti E. Detection of an Enterococcus faecium Carrying a Double Copy of the PoxtA Gene from Freshwater River, Italy. Antibiotics (Basel) 2022; 11:1618. [PMID: 36421262 PMCID: PMC9686737 DOI: 10.3390/antibiotics11111618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 08/02/2023] Open
Abstract
Oxazolidinones are valuable antimicrobials that are used to treat severe infections due to multidrug-resistant (MDR) Gram-positive bacteria. However, in recent years, a significant spread of clinically relevant linezolid-resistant human bacteria that is also present in animal and environmental settings has been detected and is a cause for concern. This study aimed to investigate the presence, genetic environments, and transferability of oxazolidinone resistance genes in enterococci from freshwater samples. A total of 10 samples were collected from a river in Central Italy. Florfenicol-resistant enterococci were screened for the presence of oxazolidinone resistance genes by PCR. Enterococcus faecium M1 was positive for the poxtA gene. The poxtA transfer (filter mating and aquaria microcosm assays), localization (S1-PFGE/hybridization), genetic context, and clonality of the isolate (WGS) were analyzed. Two poxtA copies were located on the 30,877-bp pEfM1, showing high-level identity and synteny to the pEfm-Ef3 from an E. faecium collected from an Italian coastal area. The isolate was able to transfer the poxtA to enterococcal recipients both in filter mating and aquaria microcosm assays. This is-to the best of our knowledge-the first detection of an enterococcus carrying a linezolid resistance gene from freshwater in Italy.
Collapse
Affiliation(s)
- Marzia Cinthi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Gloria D’Achille
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| |
Collapse
|