1
|
Li X, Busch LM, Piersma S, Wang M, Liu L, Gesell Salazar M, Surmann K, Mäder U, Völker U, Buist G, van Dijl JM. Functional and Proteomic Dissection of the Contributions of CodY, SigB and the Hibernation Promoting Factor HPF to Interactions of Staphylococcus aureus USA300 with Human Lung Epithelial Cells. J Proteome Res 2024; 23:4742-4760. [PMID: 39302699 PMCID: PMC11459534 DOI: 10.1021/acs.jproteome.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus is a leading cause of severe pneumonia. Our recent proteomic investigations into S. aureus invasion of human lung epithelial cells revealed three key adaptive responses: activation of the SigB and CodY regulons and upregulation of the hibernation-promoting factor SaHPF. Therefore, our present study aimed at a functional and proteomic dissection of the contributions of CodY, SigB and SaHPF to host invasion using transposon mutants of the methicillin-resistant S. aureus USA300. Interestingly, disruption of codY resulted in a "small colony variant" phenotype and redirected the bacteria from (phago)lysosomes into the host cell cytoplasm. Furthermore, we show that CodY, SigB and SaHPF contribute differentially to host cell adhesion, invasion, intracellular survival and cytotoxicity. CodY- or SigB-deficient bacteria experienced faster intracellular clearance than the parental strain, underscoring the importance of these regulators for intracellular persistence. We also show an unprecedented role of SaHPF in host cell adhesion and invasion. Proteomic analysis of the different mutants focuses attention on the CodY-perceived metabolic state of the bacteria and the SigB-perceived environmental cues in bacterial decision-making prior and during infection. Additionally, it underscores the impact of the nutritional status and bacterial stress on the initiation and progression of staphylococcal lung infections.
Collapse
Affiliation(s)
- Xiaofang Li
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Larissa M. Busch
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Sjouke Piersma
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Min Wang
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Lei Liu
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Manuela Gesell Salazar
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Girbe Buist
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
2
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
3
|
Elbediwi M, Rolff J. Metabolic pathways and antimicrobial peptide resistance in bacteria. J Antimicrob Chemother 2024; 79:1473-1483. [PMID: 38742645 DOI: 10.1093/jac/dkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Animal Health Research Institute, Agriculture Research Centre, 12618 Cairo, Egypt
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
4
|
Karimaei S, Aghamir SMK, Pourmand MR. Comparative analysis of genes expression involved in type II toxin-antitoxin system in Staphylococcus aureus following persister cell formation. Mol Biol Rep 2024; 51:324. [PMID: 38393536 DOI: 10.1007/s11033-023-09179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The formation of persister cells is the main reason for persistent infections. They are associated with antibiotic treatment failure and subsequently chronic infection. The study aimed to assess the expression of type II toxin/antitoxin (TA) system genes in persister cells of Staphylococcus aureus in the presence of the following antibiotics vancomycin, ciprofloxacin, and gentamicin in exponential and stationary phases. METHODS AND RESULTS The colony count was used to evaluate the effect of different types of antibiotics on S. aureus persister cell formation during exponential and stationary phases. Moreover, the expression level of TA systems and clpP genes in the persister population in exponential and stationary phases were measured by quantitative reverse transcriptase real-time PCR (qRT-PCR). The results of the study showed the presence of persister phenotype of S. aureus strains in the attendance of bactericidal antibiotics in comparison to the control group during the exponential and stationary phases. Moreover, qRT-PCR resulted in the fact that the role of TA systems involved in the persister cell formation depends on the bacterial growth phase and the type of strain and antibiotic. CONCLUSIONS In total, the present study provides some data on the persister cell formation and the possible role of TA system genes in this process.
Collapse
Affiliation(s)
- Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|