1
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
2
|
Andalan JR, Mondejar AJS, Sumaya NHN, Guihawan JQ, Madamba MRSB, Baltazar Tabelin C, Guilingen D, Paglinawan FC, Maulas KM, Arquisal I, Beltran AB, Orbecido AH, Promentilla MA, Alonzo D, Pisda PF, Ananayo A, Suelto M, Dalona IM, Resabal VJ, Armstrong R, Jungblut AD, Santos A, Brito-Parada P, Plancherel Y, Herrington R, Villacorte-Tabelin M. Ethnobotanical survey of medicinal and ritual plants utilized by the indigenous communities of Benguet province, Philippines. Trop Med Health 2024; 52:59. [PMID: 39256882 PMCID: PMC11385124 DOI: 10.1186/s41182-024-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The Sto. Niño site in Benguet province, Philippines was once a mining area that has now been transformed into an agricultural land. In this area, there has been significant integration of the three indigenous people (IPs) Ibaloi, Kankanaeys and Kalanguyas with the Ilocano community. These IPs safeguard biodiversity and traditional knowledge, including medicinal plant use. However, the documentation of these plant species and their medicinal applications has not been systematic, with the resultant loss of knowledge across generations. This study aims to document the medicinal and ritual plants used by the indigenous communities at the site, in order to preserve and disseminate traditional medicinal knowledge that would otherwise be lost. METHODS Ethnobotanical data were collected in Sto. Niño, Brgy. Ambassador, Municipality of Tublay, Benguet, Philippines, and collected through semi-structured interviews, together with focus group discussions (FGD). A total of 100 residents (39 male and 61 female) were interviewed. Among them, 12 were key interviewees, including community elders and farmers, while the rest were selected through the convenience and snowball technique. Demographic information collected from the interviewees included age, gender, and occupation. Ethnobotanical information collected focused on medicinal plants, including the specific parts of plants used, methods of preparation, modes of treatment, and the types of ailments treated. Ethnobotanical quantitative indices of the relative frequency of citations (RFC) and informant consensus factor (ICF) were calculated to evaluate the plant species that were utilized by the community. RESULTS A total of 28 medicinal plants from 20 different families and 6 ritual plants from 5 different families were documented. Asteraceae, Poaceae, and Lamiaceae (10.71%) family are the most mentioned medicinal plant species, followed by Myrtaceae and Euphorbiaceae (7.14%). The most widely used growth form were herbs (46.4%), while leaves (61.5%) were the most utilized plant part, and the preparation of a decoction (62.2%) was the most preferred method of processing and application. The medicinal plants were most commonly utilized for wound-healing, cough and colds, stomachache and kidney trouble, whereas ritual plants were largely used for healing, protection, and funeral ceremonies. CONCLUSION This study marks the first report on the medicinal and ritual plants used by a group of indigenous communities in Sto. Niño, Brgy. Ambassador, Tublay, Benguet Province. The data collected show that plant species belonging to the Asteraceae, Poaceae, and Lamiaceae family were the most mentioned and should be further evaluated by pharmacological analysis to assess their wider use for medicinal treatment.
Collapse
Affiliation(s)
- Janna R Andalan
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Alissa Jane S Mondejar
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Nanette Hope N Sumaya
- Center for Biodiversity Studies and Conservation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Jaime Q Guihawan
- Center for Biodiversity Studies and Conservation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Ma Reina Suzette B Madamba
- Center for Biodiversity Studies and Conservation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Resource Processing and Technology Center, REIT, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - David Guilingen
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Florifern C Paglinawan
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Kryzzyl M Maulas
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Isidro Arquisal
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Arnel B Beltran
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Aileen H Orbecido
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | | | - Dennis Alonzo
- School of Education, University of New South Wales, Sydney, Australia
| | - Pamela Flynn Pisda
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Alleah Ananayo
- Department of Chemical Engineering, De LaSalle University, Manila, Philippines
| | - Marlon Suelto
- University of the Philippines, Los Baños, Laguna, Philippines
| | - Irish Mae Dalona
- College of Arts and Social Sciences, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Vannie Joy Resabal
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | | | | | - Ana Santos
- Department of Science, Natural History Museum, London, UK
| | - Pablo Brito-Parada
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Yves Plancherel
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Mylah Villacorte-Tabelin
- Center for Natural Products and Drug Discovery, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
- Center for Microbial Genomics and Proteomics Innovation, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
| |
Collapse
|
3
|
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, Criveanu HR, Oltean I. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1992. [PMID: 39065519 PMCID: PMC11281253 DOI: 10.3390/plants13141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In recent years, essential oils (EOs) have received increased attention from the research community, and the EOs of cinnamon, patchouli, and geranium have become highly recognized for their antibacterial, antifungal, antiviral, and antioxidant effects. Due to these properties, they have become valuable and promising candidates for addressing the worldwide threat of antimicrobial resistance and other diseases. Simultaneously, studies have revealed promising new results regarding the effects of physical fields (magnetic and electric) and LASER (MEL) exposure on seed germination, plant growth, biomass accumulation, and the yield and composition of EOs. In this frame, the present study aims to investigate the influence of MEL treatments on cinnamon, patchouli, and geranium EOs, by specifically examining their composition, antimicrobial properties, and antioxidant activities. Results showed that the magnetic influence has improved the potency of patchouli EO against L. monocytogenes, S. enteritidis, and P. aeruginosa, while the antimicrobial activity of cinnamon EO against L. monocytogenes was enhanced by the electric and laser treatments. All exposures have increased the antifungal effect of geranium EO against C. albicans. The antioxidant activity was not modified by any of the treatments. These findings could potentially pave the way for a deeper understanding of the efficiency, the mechanisms of action, and the utilization of EOs, offering new insights for further exploration and application.
Collapse
Affiliation(s)
- Camelia Scheau
- PhD School of Agricultural Engineering Sciences, USAMV Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Ancuța Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Anamaria Mălinaș
- Department of Environmental Protection and Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Ștefania Dana Coldea
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Viorel Cornel Pop
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Nicodim Iosif Fit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Flore Chirilă
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Horia Radu Criveanu
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| | - Ion Oltean
- Department of Plant Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
4
|
Fimbres-García JO, Flores-Sauceda M, Othón-Díaz ED, García-Galaz A, Tapia-Rodriguez MR, Silva-Espinoza BA, Alvarez-Armenta A, Ayala-Zavala JF. Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:444. [PMID: 38786172 PMCID: PMC11117758 DOI: 10.3390/antibiotics13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.
Collapse
Affiliation(s)
- Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Alfonso García-Galaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Melvin R. Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Sonora, Mexico;
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Andres Alvarez-Armenta
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| |
Collapse
|
5
|
Uc-Cachón AH, Calvo-Irabien LM, Dzul-Beh ADJ, Dzib-Baak HE, Grijalva-Arango R, Molina-Salinas GM. Potential Anti-Infectious Activity of Essential Oil Chemotypes of Lippia origanoides Kunth on Antibiotic-Resistant Staphylococcus aureus Strains. PLANTS (BASEL, SWITZERLAND) 2024; 13:1172. [PMID: 38732387 PMCID: PMC11085919 DOI: 10.3390/plants13091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Staphylococcus aureus infections are prevalent in healthcare and community environments. Methicillin-resistant S. aureus is catalogued as a superbug of high priority among the pathogens. This Gram-positive coccus can form biofilms and produce toxins, leading to persistent infection and antibiotic resistance. Limited effective antibiotics have encouraged the development of innovative strategies, with a particular emphasis on resistance mechanisms and/or virulence factors. Medicinal aromatic plants have emerged as promising alternative sources. This study investigated the antimicrobial, antibiofilm, and antihemolysis properties of three different chemotypes of Lippia origanoides essential oil (EO) against susceptible and drug-resistant S. aureus strains. The chemical composition of the EO was analyzed using GC-MS, revealing high monoterpene concentrations, with carvacrol and thymol as the major components in two of the chemotypes. The third chemotype consisted mainly of the sesquiterpene β-caryophyllene. The MIC values for the two monoterpene chemotypes ranged from 62.5 to 500 µg/mL for all strains, whereas the sesquiterpene chemotype showed activity against seven strains at concentrations of 125-500 µg/mL, which is the first report of its anti-S. aureus activity. The phenolic chemotypes inhibited biofilm formation in seven S. aureus strains, whereas the sesquiterpene chemotype only inhibited biofilm formation in four strains. In addition, phenolic chemotypes displayed antihemolysis activity, with IC50 values ranging from 58.9 ± 3.8 to 128.3 ± 9.2 µg/mL. Our study highlights the importance of L. origanoides EO from the Yucatan Peninsula, which has the potential for the development of anti-S. aureus agents.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Luz María Calvo-Irabien
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida 97204, Yucatán, Mexico;
| | - Angel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Haziel Eleazar Dzib-Baak
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Rosa Grijalva-Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida 97204, Yucatán, Mexico;
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| |
Collapse
|
6
|
Eshaghi R, Mohsenzadeh M, Ayala-Zavala JF. Bio-nanocomposite active packaging films based on carboxymethyl cellulose, myrrh gum, TiO 2 nanoparticles and dill essential oil for preserving fresh-fish (Cyprinus carpio) meat quality. Int J Biol Macromol 2024; 263:129991. [PMID: 38331078 DOI: 10.1016/j.ijbiomac.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.
Collapse
Affiliation(s)
- Reza Eshaghi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. Gustavo E. Astiazarán Rosas No. 46, Col. La Victoria, C.P. 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
7
|
Tapia-Rodriguez MR, Cantu-Soto EU, Vazquez-Armenta FJ, Bernal-Mercado AT, Ayala-Zavala JF. Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano ( Lippia graveolens) Essential Oil. Antibiotics (Basel) 2023; 12:1539. [PMID: 37887240 PMCID: PMC10604308 DOI: 10.3390/antibiotics12101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen known for its ability to form biofilms, leading to persistent infections and antibiotic resistance. The limited effective antibiotics have encouraged the development of innovative strategies such as using essential oils and their constituents. This study evaluated the efficacy of oregano (Lippia graveolens) essential oil (OEO) and its terpene compounds, carvacrol and thymol, in inhibiting A. baumannii biofilms. These treatments showed a minimum inhibitory concentration of 0.6, 0.3, and 2.5 mg/mL and a minimum bactericidal concentration of 1.2, 0.6, and 5 mg/mL, respectively. Sub-inhibitory doses of each treatment and the OEO significantly reduced biofilm biomass and the covered area of A. baumannii biofilms as measured by fluorescence microscopy. Carvacrol at 0.15 mg/mL exhibited the most potent efficacy, achieving a remarkable 95% reduction. Sub-inhibitory concentrations of carvacrol significantly reduced the biofilm formation of A. baumannii in stainless steel surfaces by up to 1.15 log CFU/cm2 compared to untreated bacteria. The OEO and thymol exhibited reductions of 0.6 log CFU/cm2 and 0.4 log CFU/cm2, respectively, without affecting cell viability. Moreover, the terpenes inhibited twitching motility, a crucial step in biofilm establishment, with carvacrol exhibiting the highest inhibition, followed by OEO and thymol. The study provides valuable insights into the potential of terpenes as effective agents against A. baumannii biofilms, offering promising avenues for developing novel strategies to prevent persistent infections and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Melvin Roberto Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Ernesto Uriel Cantu-Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Francisco Javier Vazquez-Armenta
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, México Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Ariadna Thalia Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, México Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico;
| |
Collapse
|
8
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
9
|
Antimicrobial Activity of Spices Popularly Used in Mexico against Urinary Tract Infections. Antibiotics (Basel) 2023; 12:antibiotics12020325. [PMID: 36830236 PMCID: PMC9952462 DOI: 10.3390/antibiotics12020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80-90% of UTIs is Escherichia coli. However, other bacteria such as Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae cause UTIs, and antibiotics are required to treat them. However, UTI treatment can be complicated by antibiotic resistance and biofilm formation. Therefore, medicinal plants, such as spices generally added to foods, can be a therapeutic alternative due to the variety of phytochemicals such as polyphenols, saponins, alkaloids, and terpenes present in their extracts that exert antimicrobial activity. Essential oils extracted from spices have been used to demonstrate their antimicrobial efficacy against strains of pathogens isolated from UTI patients and their synergistic effect with antibiotics. This article summarizes relevant findings on the antimicrobial activity of cinnamon, clove, cumin, oregano, pepper, and rosemary, spices popularly used in Mexico against the uropathogens responsible for UTIs.
Collapse
|