1
|
McPhillips L, O’Callaghan J, Shortiss C, Jackson SA, O’Leary ND. Optimization of Screening Media to Improve Antimicrobial Biodiscovery from Soils in Undergraduate/Citizen Science Research-Engaged Initiatives. Antibiotics (Basel) 2024; 13:956. [PMID: 39452222 PMCID: PMC11504908 DOI: 10.3390/antibiotics13100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Research-engaged academic institutions offer the opportunity to couple undergraduate education/citizen science projects with antimicrobial biodiscovery research. Several initiatives reflecting this ethos have been reported internationally (e.g., Small World, Tiny Earth, MicroMundo, Antibiotics Unearthed). These programs target soil habitats due to their high microbial diversity and promote initial screening with non-selective, nutrient media such as tryptic soy agar (TSA). However, evaluation of published outputs to date indicates that isolate recovery on TSA is consistently dominated by the genera Bacillus, Pseudomonas, and Paenibacillus. In this study, we evaluated the potential of soil extract agar to enhance soil isolate diversity and antibiosis induction outcomes in our undergraduate Antibiotics Unearthed research program. Methods: We comparatively screened 229 isolates from woodland and garden soil samples on both tryptic soy agar (TSA) and soil extract agar (SEA) for antimicrobial activity against a panel of clinically relevant microbial pathogens. Results: On one or both media, 15 isolates were found to produce zones of clearing against respective pathogens. 16S rRNA gene sequencing linked the isolates with three genera: Streptomyces (7), Paenibacillus (6), and Pseudomonas (2). Six of the Streptomyces isolates and one Pseudomonas demonstrated antimicrobial activity when screened on SEA, with no activity on TSA. Furthermore, incorporation of the known secondary metabolite inducer N acetyl-glucosamine (20 mM) into SEA media altered the pathogen inhibition profiles of 14 isolates and resulted in broad-spectrum activity of one Streptomyces isolate, not observed on SEA alone. In conclusion, SEA was found to expand the diversity of culturable isolates from soil and specifically enhanced the recovery of members of the genus Streptomyces. SEA was also found to be a superior media for antibiosis induction among Streptomyces isolates when compared to TSA. It was noted that Paenibacillus isolates' antibiosis induction demonstrated a strain-specific response with respect to the growth media used. Conclusions: The authors propose SEA inclusion of in soil screening protocols as a cost-effective, complementary strategy to greatly enhance outcomes in undergraduate/citizen science-engaged antimicrobial biodiscovery initiatives.
Collapse
Affiliation(s)
| | - John O’Callaghan
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (J.O.); (C.S.); (S.A.J.)
| | - Carmel Shortiss
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (J.O.); (C.S.); (S.A.J.)
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (J.O.); (C.S.); (S.A.J.)
| | - Niall D. O’Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (J.O.); (C.S.); (S.A.J.)
- Environmental Research Institute, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
2
|
Lafuente I, Sevillano E, Peña N, Cuartero A, Hernández PE, Cintas LM, Muñoz-Atienza E, Borrero J. Production of Pumilarin and a Novel Circular Bacteriocin, Altitudin A, by Bacillus altitudinis ECC22, a Soil-Derived Bacteriocin Producer. Int J Mol Sci 2024; 25:2020. [PMID: 38396696 PMCID: PMC10888436 DOI: 10.3390/ijms25042020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.
Collapse
Affiliation(s)
- Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Alicia Cuartero
- Centro de Educación Infantil, Primaria y Secundaria Obligatoria (CEIPSO) El Cantizal, Avenida Atenas s/n, 28232 Las Rozas, Madrid, Spain;
| | - Pablo E. Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Luis M. Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| |
Collapse
|
3
|
Pino-Hurtado MS, Fernández-Fernández R, Torres C, Robredo B. Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents. Antibiotics (Basel) 2023; 13:29. [PMID: 38247588 PMCID: PMC10812812 DOI: 10.3390/antibiotics13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health due to the lack of effective drugs to combat infectious diseases, which generates the need to search for new antimicrobial substances. In this study, the potential of soil as a source of antimicrobial-producing bacteria (APB) was investigated and the importance of the connection between education and science was emphasized, using service-learning methodologies. Sixty-one soil samples were collected, and 1220 bacterial isolates were recovered. Eighteen of these isolates showed antimicrobial activity against at least 1 of the 12 indicator bacteria tested (including multidrug-resistant and relevant pathogens). The 18 APB were identified by MALDI-TOF and 6 different genera (Bacillus, Brevibacillus, Lysinobacillus, Peribacillus, Streptomyces, and Advenella) and 10 species were identified. The 18 APB were tested for antifungal activity against four phytopathogenic fungi (Botritis cynerea, Lecanicillium fungicola, Trichoderma harzianum, and Cladobotryum mycophilum). Moreover, the antibiotic susceptibility of APB was tested using the disk-diffusion method as well as their β-hemolytic activity (important safety criteria for potential future applications). A total of 10 of the 18 APB were able to inhibit at least 50% of indicator bacteria tested, including methicillin-resistant Staphylococcus aureus (MRSA), among others. A total of 4 of the 18 APB (3 Bacillus pumilus and 1 Bacillus altitudinis) showed inhibitory activity against two of the four fungal pathogens tested (B. cinerea and L. fungicola), as well as against 5-7 of the 12 bacterial pathogen indicators; these 4 isolates showed susceptibility to the antibiotics tested and lacked β-hemolytic activity and were considered promising APB for use as potential biocontrol agents. In addition, one Brevibacillus laterosporus strain had activity against 83% of indicator bacteria tested including Escherichia coli, MRSA and other methicillin-resistant staphylococci, as well as vancomycin-resistant enterococci (but not against fungi). These results show that soil is a source of APB with relevant antibacterial and antifungal activities, and also emphasize the importance of education and science to raise public awareness of the AMR problem and the strategies to control it.
Collapse
Affiliation(s)
- Mario Sergio Pino-Hurtado
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (R.F.-F.); (C.T.)
| | - Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (R.F.-F.); (C.T.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (R.F.-F.); (C.T.)
| | - Beatriz Robredo
- Area of Didactic of Experimental Sciences, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| |
Collapse
|
4
|
Felgueiras HP. Green Antimicrobials. Antibiotics (Basel) 2023; 12:1128. [PMID: 37508223 PMCID: PMC10376511 DOI: 10.3390/antibiotics12071128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
In the last couple of years, the awareness of climate change and high pollution levels have raised our sense of ecological responsibility [...].
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|