1
|
Viana AS, Tótola LPDV, Figueiredo AMS. ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents. Antibiotics (Basel) 2024; 13:893. [PMID: 39335066 PMCID: PMC11429078 DOI: 10.3390/antibiotics13090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Sequence-type 5 (ST5) of methicillin-resistant Staphylococcus aureus (MRSA), harboring the staphylococcal chromosomal cassette mec type IV (SCCmecIV), was first detected in Portugal. It emerged as a significant cause of healthcare-associated (HA) infection in pediatric units and was hence named the pediatric clone. Another ST5 lineage, which carries SCCmecII, also prevailed in the USA and Japan for multiple years. More recently, another MRSA lineage, ST105-SCCmecII, part of the evolution of clonal complex 5 (CC5) MRSA, has emerged as the cause of hospital-acquired bloodstream infection outbreaks in countries including Portugal, the USA, and Brazil. This article reviews studies on the epidemiology and evolution of these newly emerging pathogens. To this end, a search of PUBMED from inception to 2024 was performed to find articles reporting the occurrence of ST105 MRSA in epidemiologic studies. A second search was performed to find studies on MRSA, CC5, ST5, and SCCmecII. A search of PUBMED from 1999 to 2024 was also performed to identify studies on the genomics and evolution of ST5, CC5, and ST105 MRSA. Further studies were identified by analyzing the references of the previously selected articles from PUBMED. Most articles on ST105 MRSA were included in this review. Only articles written in English were included. Furthermore, only studies that used a reliable genotyping method (e.g., whole genome sequencing, or MLST) to classify the CC5 lineages were selected. The quality and selection of articles were based on the consensus assessment of the three authors in independent evaluations. In conclusion, ST105-SCCmecII is an emerging MRSA in several countries, being the second/third most important CC5 lineage, with a relatively high frequency in bloodstream infections. Of concern is the increased mortality from BSI in patients older than 15 years and the higher prevalence of ST105-SCCmecII in the blood of patients older than 60 years reported in some studies.
Collapse
Affiliation(s)
- Alice Slotfeldt Viana
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Laís Pires do Valle Tótola
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Faculdade de Medicina, Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| |
Collapse
|
2
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Di Gregorio S, Weltman G, Fabbri C, Fernández S, Zárate S, Smayevsky J, Power P, Campos J, Llarrull LI, Mollerach M. Genetic and Phenotypic Changes Related to the Development of mec-Independent Oxacillin Non-Susceptibility in ST8 Staphylococcus aureus Recovered after Antibiotic Therapy in a Patient with Bacteremia. Antibiotics (Basel) 2024; 13:554. [PMID: 38927220 PMCID: PMC11200602 DOI: 10.3390/antibiotics13060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The mec-independent oxacillin non-susceptible S. aureus (MIONSA) strains represent a great clinical challenge, as they are not easily detected and can lead to treatment failure. However, the responsible molecular mechanisms are still very little understood. Here, we studied four clinical ST8-MSSA-t024 isolates recovered during the course of antibiotic treatment from a patient suffering successive episodes of bacteremia. The first isolates (SAMS1, SAMS2, and SAMS3) were susceptible to cefoxitin and oxacillin. The last one (SA2) was susceptible to cefoxitin, resistant to oxacillin, lacked mec genes, and had reduced susceptibility to teicoplanin. SA2 showed higher β-lactamase activity than SAMS1. However, β-lactamase hyperproduction could not be linked to oxacillin resistance as it was not inhibited by clavulanic acid, and no genetic changes that could account for its hyperproduction were found. Importantly, we hereby report the in vivo acquisition and coexistence of different adaptive mutations in genes associated with peptidoglycan synthesis (pbp2, rodA, stp1, yjbH, and yvqF/vraT), which is possibly related with the development of oxacillin resistance and reduced susceptibility to teicoplanin in SA2. Using three-dimensional models and PBP binding assays, we demonstrated the high contribution of the SA2 PBP2 Ala450Asp mutation to the observed oxacillin resistance phenotype. Our results should be considered as a warning for physicians and microbiologists in the region, as MIONSA detection and treatment represent an important clinical challenge.
Collapse
Affiliation(s)
- Sabrina Di Gregorio
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Gabriela Weltman
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Carolina Fabbri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, Rosario 2000, Argentina
| | - Silvina Fernández
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Soledad Zárate
- Laboratorio de Bacteriología, Micología y Parasitología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires 1431, Argentina
| | - Jorgelina Smayevsky
- Laboratorio de Bacteriología, Micología y Parasitología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires 1431, Argentina
| | - Pablo Power
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires 1282, Argentina
| | - Leticia Irene Llarrull
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, Rosario 2000, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, Rosario 2000, Argentina
| | - Marta Mollerach
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Cheng X, Wang Y, Ma J, Ma L, Sun W, Su J. Resistance phenotype and genetic features of a heterogeneous vancomycin intermediate-resistant Staphylococcus aureus strain from an immunocompromised patient. Braz J Microbiol 2024; 55:323-332. [PMID: 38057692 PMCID: PMC10920550 DOI: 10.1007/s42770-023-01192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Strain C1 was successfully isolated from an immunosuppressed patient with persistent bacteremia, who had not previously been exposed to glycopeptide antibiotics. This strain was found to be a heterogeneous vancomycin intermediate-resistant Staphylococcus aureus (hVISA). It is noteworthy that, following a brief period of vancomycin treatment, strains C6, C8, and C9, which were obtained from blood and other body parts, exhibited a significant reduction in heterogeneity as determined by population analysis profile-area under the curve (PAP-AUC) detection. Genotyping analysis revealed that these bacterial strains belonged to the same SCCmecIVa-ST59-t437-agrI genotype and shared the same virulome and resistome. In this study, a comparative genomics analysis was conducted between strain C1 and strain N315 to identify potential hVISA-associated mutations. Ultimately, a total of 205 mutation sites in 19 candidate genes, likely associated with the hVISA phenotype, were identified.
Collapse
Affiliation(s)
- Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaru Wang
- Department of Gynecology and Obstetrics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Jingxin Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Cheng X, Ma L, Wang Y, Sun W, Su J. Prevalence and molecular characteristics of heterogeneous vancomycin intermediate Staphylococcus aureus in a tertiary care center of northern China. Diagn Microbiol Infect Dis 2024; 108:116180. [PMID: 38183897 DOI: 10.1016/j.diagmicrobio.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The use of glycopeptide medications may decline in line with the annual decline in methicillin-resistant Staphylococcus aureus (MRSA) detection rates in China. The rate of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)detection may be impacted by this. However, there is currently a dearth of information on the incidence of hVISA in China. This study aims to analyze the recent epidemiology and molecular characteristics of hVISA strains in Beijing, China. A total of 175 non-duplicate MRSA strains from various infection sites were collected from a medical center between January 2018 and May 2023 and underwent molecular typing and susceptibility testing (Vitek2). Vancomycin and teicoplanin MICs were also evaluated by standard broth microdilution method and agar dilution method, respectively. Isolates growing on screening agar (BHIV4 and BHIT5, brain heart infusion agar containing 4 μg/ml vancomycin and 5 μg/ml teicoplanin, respectively) were characterized further by analysis of macro-Etest (MET) and population analysis profiling with area under the curve (PAP-AUC). The proportion of hVISA among MRSA isolates was 8.6 %. BHIT5 could select all hVISA strains while BHIV4 and MET only selected two hVISA strains. Compared with vancomycin- susceptible Staphylococcus aureus (VSSA), hVISA isolates were less susceptible to erythromycin and clindamycin. In addition, hVISA frequency was MIC-independent despite using different detection methods. In total, 11 types of STs, 28 types of spa typing, four types of SCCmec typing, and two types of agr typing were identified and the predominant type in both MRSA and hVISA isolates was ST239-t030-SCCmecIII-agr I. The analysis of biofilm formation, growth, and virulence genes in hVISA strains revealed sparse information. The dataset presented in this study provided the prevalence and molecular characteristics of hVISA in hospital settings and the combination of BHIT5 and PAP-AUC may identify hVISA efficiently. The result of genotyping suggested the genotype of hVISA was mainly consistent with that of local MRSA. Additional studies on the characteristics of hVISA strains were necessary.
Collapse
Affiliation(s)
- Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yaru Wang
- Department of Gynecology and Obstetrics, Hua Zhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
| | - Wei Sun
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|