Abstract
Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different size and cargo, were isolated and purified. S. coelicolor MV cargo was determined being complex and containing different kinds of proteins and metabolites. In particular, a whole of 166 proteins involved in cell metabolism/differentiation, molecular processing/transport, and stress response was identified in MVs, the latter functional class being also important for bacterial morpho-physiological differentiation. A subset of these proteins was protected from degradation following treatment of MVs with proteinase K, indicating their localization inside the vesicles. Moreover, S. coelicolor MVs contained an array of metabolites, such as antibiotics, vitamins, amino acids and components of carbon metabolism. In conclusion, this analysis provides detailed information on S. coelicolor MVs under basal conditions and corresponding content, which may be useful in a next future to elucidate vesicle biogenesis and functions. Importance Streptomycetes are widely distributed in nature, and they are characterized by a complex life cycle that involves morphological differentiation. They are very relevant in industry because they produce about a half of the antibiotics used clinically and other important pharmaceutical products having natural origin. Streptomyces coelicolor is a model organism for the study of bacterial differentiation and bioactive molecule production. S. coelicolor produces extracellular vesicles carrying many molecules such as proteins and metabolites, including antibiotics. The elucidation of S. coelicolor extracellular vesicle cargo will help to understand different aspects of streptomycete physiology, such as cell communication during differentiation and response to environmental stimuli. Moreover, the capability of carrying different kind of biomolecules opens up new biotechnological possibilities related to drug delivery. Indeed, the decoding of molecular mechanisms involved in cargo selection may lead to the customization of the content of extracellular vesicles.
Collapse