1
|
Valdés DA, Minter JE. Clinical use and applications of a citrate-based antiseptic lavage for the prevention and treatment of PJI. Front Med (Lausanne) 2024; 11:1397192. [PMID: 39015785 PMCID: PMC11249742 DOI: 10.3389/fmed.2024.1397192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Total joint arthroplasties (TJA) are some of the most commonly performed surgeries in the United States with the number of TJA expected to rise significantly over the next decade as the population ages and arthritic burden worsens. However, the rise in TJA volume correlates with a heightened risk of complications, notably prosthetic joint infections (PJI), despite their low occurrence rate of less than 2%. PJI imposes a significant burden on surgery success, patient well-being, and healthcare costs, with an estimated annual expense of 1.85 billion dollars for hip and knee PJI by 2030. This manuscript delves into the pathophysiology of PJI, exploring our current understanding of the role of bacterial biofilm formation on implanted foreign hardware, providing protection against the host immune system and antibiotics. The article reviews current agents and their efficacy in treating PJI, as well as their cytotoxicity toward native cells involved in wound healing, prompting the exploration of a novel citrate-based solution. The paper highlights the superior properties and efficacy of a novel citrate-based irrigation solution on the treatment and prevention of PJI via increased antimicrobial properties, greater biofilm disruption, increased exposure time, and reduced cytotoxicity compared to conventional solutions, positioning it as a promising alternative. It also provides a perspective on its clinical use in the operating theater, with a step-by-step approach in TJA, whether primary or revisionary.
Collapse
|
2
|
Banti CN, Kalampounias AG, Hadjikakou SK. Non-Steroidal Anti-Inflammatory Drugs Loaded to Micelles for the Modulation of Their Water Solubility. Int J Mol Sci 2023; 24:15152. [PMID: 37894836 PMCID: PMC10607354 DOI: 10.3390/ijms242015152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The low water solubility of aspirin (ASPH) is well known, creating research challenges regarding both its composition and its delivery. Therefore, the development of new aspirin-based formulations that are water soluble is a research, technological, and financial issue. With the aim to improve the water solubility of ASPH, the micelle of formula SLS@ASPH (SLS = Sodium Lauryl Sulfate) was formed. The Critical Micelle Concentration (CMC) of SLS in the presence of ASPH was determined by ultrasonic velocity, complementary, and transient birefringence measurements. The SLS@ASPH was characterized by the melting point (m.p.), attenuated total reflection spectroscopy (FT-IR-ATR), and X-ray fluorescence spectroscopy (XRF) in a solid state and in a solution by ultraviolet-visible (UV-Vis) and 1H NMR spectroscopies. The SLS/ASPH molar ratio was determined to be 5/1 in SLS@ASPH. The inhibitory activity of SLS@ASPH towards lipoxygenase (LOX), an enzyme that takes part in the inflammation mechanism, was studied. The inhibitory activity of SLS@ASPH against LOX is 3.5-fold stronger than that of free SLS. The in vitro toxicity of the SLS@ASPH was tested on immortalized human keratinocyte (HaCaT) cells.
Collapse
Affiliation(s)
- Christina N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Angelos G. Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Sotiris K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
3
|
The Study of Nanosized Silicate-Substituted Hydroxyapatites Co-Doped with Sr 2+ and Zn 2+ Ions Related to Their Influence on Biological Activities. Curr Issues Mol Biol 2022; 44:6229-6246. [PMID: 36547086 PMCID: PMC9776463 DOI: 10.3390/cimb44120425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Nanosized silicate-substituted hydroxyapatites, characterized by the general formula Ca9.8-x-nSrnZnx(PO4)6-y(SiO4)y(OH)2 (where: n = 0.2 [mol%]; x = 0.5-3.5 [mol%]; y = 4-5 [mol%]), co-doped with Zn2+ and Sr2+ ions, were synthesized with the help of a microwave-assisted hydrothermal technique. The structural properties were determined using XRD (X-ray powder diffraction) and Fourier-transformed infrared spectroscopy (FT-IR). The morphology, size and shape of biomaterials were detected using scanning electron microscopy techniques (SEM). The reference strains of Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa were used to assess bacterial survivability and the impact on biofilm formation in the presence of nanosilicate-substituted strontium-hydroxyapatites. Safety evaluation was also performed using the standard cytotoxicity test (MTT) and hemolysis assay. Moreover, the mutagenic potential of the materials was assessed (Ames test). The obtained results suggest the dose-dependent antibacterial activity of nanomaterials, especially observed for samples doped with 3.5 mol% Zn2+ ions. Moreover, the modification with five SiO4 groups enhanced the antibacterial effect; however, a rise in the toxicity was observed as well. No harmful activity was detected in the hemolysis assay as well as in the mutagenic assay (Ames test).
Collapse
|
4
|
Banti CN, Kapetana M, Papachristodoulou C, Raptopoulou CP, Psycharis V, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Hydrogels containing water soluble conjugates of silver(I) ions with amino acids, metabolites or natural products for non infectious contact lenses. Dalton Trans 2021; 50:13712-13727. [PMID: 34636378 DOI: 10.1039/d1dt02158c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The poor handling and hygiene practices of contact lenses are the key reasons for their frequent contamination, and are responsible for developing ocular complications, such as microbial keratitis (MK). Thus there is a strong demand for the development of biomaterials of which contact lenses are made, combined with antimicrobial agents. For this purpose, the known water soluble silver(I) covalent polymers of glycine (GlyH), urea (U) and the salicylic acid (SalH2) of formulae [Ag3(Gly)2NO3]n (AGGLY), [Ag(U)NO3]n (AGU), and dimeric [Ag(salH)]2 (AGSAL) were used. Water solutions of AGGLY, AGU and AGSAL were dispersed in polymeric hydrogels using hydroxyethyl-methacrylate (HEMA) to form the biomaterials pHEMA@AGGLY-2, pHEMA@AGU-2, and pHEMA@AGSAL-2. The biomaterials were characterized by X-ray fluorescence (XRF) spectroscopy, thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC), attenuated total reflection spectroscopy (FT-IR-ATR) and single crystal diffraction analysis. The antibacterial activity of AGGLY, AGU, AGSAL, pHEMA@AGGLY-2, pHEMA@AGU-2 and pHEMA@AGSAL-2 was evaluated against the Gram negative species Pseudomonas aeruginosa (P. aeruginosa) and Gram positive ones Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which mainly colonize in contact lenses. The in vitro toxicity of the biomaterials and their ingredients was evaluated against normal human corneal epithelial cells (HCECs) whereas the in vitro genotoxicity was evaluated by the micronucleus (MN) assay in HCECs. The Artemia salina and Allium cepa models were applied for the evaluation of in vivo toxicity and genotoxicity of the materials. Following our studies, the new biomaterials pHEMA@AGGLY-2, pHEMA@AGU-2, and pHEMA@AGSAL-2 are suggested as efficient candidates for the development of antimicrobial contact lenses.
Collapse
Affiliation(s)
- C N Banti
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - M Kapetana
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | | | - C P Raptopoulou
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology, A. Paraskevi, Attikis, Greece
| | - V Psycharis
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology, A. Paraskevi, Attikis, Greece
| | - P Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Greece
| | - T Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens, Greece
| | - S K Hadjikakou
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
5
|
Rossos AK, Banti CN, Raptis PK, Papachristodoulou C, Sainis I, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles Using Eucalyptus or Willow Extracts (AgNPs) as Contact Lens Hydrogel Components to Reduce the Risk of Microbial Infection. Molecules 2021; 26:5022. [PMID: 34443612 PMCID: PMC8400931 DOI: 10.3390/molecules26165022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.
Collapse
Affiliation(s)
- Andreas K. Rossos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | - Christina N. Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | - Panagiotis K. Raptis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | | | - Ioannis Sainis
- Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece;
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, University of West Attica, 12243 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Chrysouli MP, Banti CN, Kourkoumelis N, Moushi EE, Tasiopoulos AJ, Douvalis A, Papachristodoulou C, Hatzidimitriou AG, Bakas T, Hadjikakou SK. Ciprofloxacin conjugated to diphenyltin(IV): a novel formulation with enhanced antimicrobial activity. Dalton Trans 2021; 49:11522-11535. [PMID: 32656556 DOI: 10.1039/d0dt01665a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The metalloantibiotic of formula Ph2Sn(CIP)2 (CIPTIN) (HCIP = ciprofloxacin) was synthesized by reacting ciprofloxacin hydrochloride (HCIP·HCl) (an antibiotic in clinical use) with diphenyltin dichloride (Ph2SnCl2DPTD). The complex was characterized in the solid state by melting point, FT-IR, X-ray Powder Diffraction (XRPD) analysis, 119Sn Mössbauer spectroscopy, X-ray Fluorescence (XRF) spectroscopy, and Thermogravimetry/Differential Thermal Analysis (TG-DTA) and in solution by UV-Vis, 1H NMR spectroscopic techniques and Electrospray Ionisation Mass Spectrometry (ESI-MS). The crystal structure of CIPTIN and its processor HCIP was also determined by X-ray crystallography. The antibacterial activity of CIPTIN, HCIP·HCl, HCIP and DPTD was evaluated against the bacterial species Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Inhibition Zones (IZs). CIPTIN shows lower MIC values than those of HCIP·HCl (up to 4.2-fold), HCIP (up to 2.7-fold) or DPTD (>135-fold), towards the tested microbes. CIPTIN is classified into bactericidal agents according to MBC/MIC values. The developing IZs are 40.8 ± 1.5, 34.0 ± 0.8, 36.0 ± 1.1 and 42.7 ± 0.8 mm, respectively which classify the microbes P. aeruginosa, E. coli, S. aureus and S. epidermidis to susceptible ones to CIPTIN. These IZs are greater than the corresponding ones of HCIP·HCl by 1.1 to 1.5-fold against both the tested Gram negative and Gram positive bacteria. CIPTIN eradicates the biofilm of P. aeruginosa and S. aureus more efficiently than HCIP·HCl and HCIP. The in vitro toxicity and genotoxicity of CIPTIN were tested against human skin keratinocyte cells (HaCaT) (IC50 = 2.33 μM). CIPTIN exhibits 2 to 9-fold lower MIC values than its IC50 against HaCaT, while its genotoxic effect determined by micronucleus assay is equivalent to the corresponding ones of HCIP·HCl or HCIP.
Collapse
Affiliation(s)
- M P Chrysouli
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - C N Banti
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - N Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece
| | - E E Moushi
- Department of Life Sciences, The School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A J Tasiopoulos
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - A Douvalis
- Mössbauer Spectroscopy and Physics of Material Laboratory, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - A G Hatzidimitriou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T Bakas
- Mössbauer Spectroscopy and Physics of Material Laboratory, Department of Physics, University of Ioannina, Ioannina, Greece
| | - S K Hadjikakou
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
7
|
Meretoudi A, Banti CN, Raptis PK, Papachristodoulou C, Kourkoumelis N, Ikiades AA, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles from Oregano Leaves' Extracts as Antimicrobial Components for Non-Infected Hydrogel Contact Lenses. Int J Mol Sci 2021; 22:3539. [PMID: 33805476 PMCID: PMC8037402 DOI: 10.3390/ijms22073539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
The oregano leaves' extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV-Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.
Collapse
Affiliation(s)
- Anastasia Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Christina N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Panagiotis K. Raptis
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | | | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Aris A. Ikiades
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece; (C.P.); (A.A.I.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, 11635 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
8
|
Banti CN, Hadjikakou SK. Evaluation of Toxicity with Brine Shrimp Assay. Bio Protoc 2021; 11:e3895. [PMID: 33732784 PMCID: PMC7952950 DOI: 10.21769/bioprotoc.3895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The in vivo toxicity of new metallodrugs either as Small Bioactive Molecules (SBAMs) or Conjugates of Metals with Drugs (CoMeDs) or their hydrogels such as with hydroxyethyl-methacrylate (HEMA) (pHEMA@SBAMs or pHEMA@CoMeDs) are evaluated by the brine shrimp assay. Thus individuals of Artemia salina larvae are incubated in saline solutions with SBAMs, CoMeDs, pHEMA@SBAMs or pHEMA@CoMeDs or without for 24 h. The toxicity is then determined in terms of the mortality rate of brine shrimp larvae. Brine shrimp assay is a low cost, safe, no required feeding during the assay, while it requiring only a small amount of the tested agent.
Collapse
Affiliation(s)
- Christina N. Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Sotiris K. Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Meretoudi A, Banti CN, Siafarika P, Kalampounias AG, Hadjikakou SK. Tetracycline Water Soluble Formulations with Enhanced Antimicrobial Activity. Antibiotics (Basel) 2020; 9:E845. [PMID: 33256054 PMCID: PMC7760183 DOI: 10.3390/antibiotics9120845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The negligible water solubility of tetracycline (TC), a well-known antibiotic of clinical use, is the major disadvantage for its oral administration. With the aim to improve the water solubility of TC, the micelles of formulae SLS@TC and CTAB@TC (SLS = sodium lauryl sulphate and CTAB = cetrimonium bromide) were synthesized. The micelles SLS@TC and CTAB@TC were characterized by melting point (m.p.), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC), attenuated total reflection spectroscopy (FT-IR-ATR), ultra-violet visible (UV/vis) spectroscopy, proton nucleus magnetic resonance (1H-NMR) spectroscopy, and the ultrasonically-induced biregringence technique. The antimicrobial activity of SLS@TC and CTAB@TC was evaluated, by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ), against the Gram negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) and the Gram positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus). Generally, both micelles show better activity than that of TC against the microbial strains tested. Thus, the MIC value of CTAB@TC is 550-fold higher than that of free TC against S. epidermidis. Despite the stronger activity of CTAB@TC than SLS@TC against both Gram negative and Gram positive microbes, SLS@TC is classified as a bactericidal agent (in that it eliminates 99.9% of the microbes), in contrast to CTAB@TC, which is bacteriostatic one (inhibits, but does not kill the organisms). The toxicity of SLS@TC and CTAB@TC was evaluated against human corneal eukaryotic cells (HCECs). Moreover, SLS@TC and CTAB@TC exhibit low in vivo toxicity against Artemia salina, even at concentrations up to threefold higher than those of their MICmax. Therefore, SLS@TC and CTAB@TC can be candidates for the development of new antibiotics.
Collapse
Affiliation(s)
- A. Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - C. N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - P. Siafarika
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - A. G. Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - S. K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
10
|
Conjugation of Penicillin-G with Silver(I) Ions Expands Its Antimicrobial Activity against Gram Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9010025. [PMID: 31941048 PMCID: PMC7168214 DOI: 10.3390/antibiotics9010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Conjugation of penicillin G (PenH) with silver(I) ions forms a new CoMeD (conjugate of metal with a drug) with formula [Ag(pen)(CH3OH)]2 (PenAg). PenAg was characterized by a plethora of physical and spectroscopic techniques, which include in the solid state m.p.; elemental analysis; X-ray fluorescence (XRF) spectroscopy; scanning electron microscopy (SEM); energy-dispersive X-ray spectroscopy (EDX); FT-IR; and in solution: attenuated total reflection spectroscopy (FT-IR-ATR), UV–Vis, 1H NMR, and atomic absorption (AA). The structure of PenAg was determined by NMR spectroscopy. Silver(I) ions coordinate to the carboxylic group of PenH, while secondary intra-molecular interactions are developed through (i) the nitrogen atom of the amide group in MeOD-d4 or (ii) the sulfur atom in the thietane ring in deuterated dimethyl sulfoxide DMSO-d6. The antibacterial activities of PenAg and the sodium salt of penicillin (PenNa) (the formulation which is clinically used) against Gram positive (Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus)) and Gram negative (Pseudomonas aeruginosa (P. aeuroginosa PAO1)) bacteria were evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ). PenAg inhibits the growth of the Gram negative bacterial strain P. aeuroginosa with a MIC value of 23.00 ± 2.29 μM, in contrast to PenNa, which shows no such activity (>2 mM). The corresponding antimicrobial activities of PenAg against the Gram positive bacteria S. epidermidis and S. aureus are even better than those of PenNa. Moreover, PenAg exhibits no in vivo toxicity against Artemia salina at concentration up to 300 μΜ. The wide therapeutic window and the low toxicity, make PenAg a possible candidate for the development of a new antibiotic.
Collapse
|