1
|
Stachura DL, Kalyvas JT, Abell AD. New Potent Sulfonamide-Based Inhibitors of S. aureus Biotin Protein Ligase. ACS Med Chem Lett 2024; 15:1467-1473. [PMID: 39291019 PMCID: PMC11403734 DOI: 10.1021/acsmedchemlett.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
The key regulatory metabolic enzyme, biotin protein ligase (BPL), is an attractive target for the development of novel antibiotics against multi-drug-resistant bacteria, such as Staphylococcus aureus. Here we report the synthesis and assay of a new series of inhibitors (6-9) against S. aureus BPL (SaBPL), where a component sulfonamide linker was used to mimic the acyl-phosphate group of the natural intermediate biotinyl-5'-AMP (1). A pivotal correlation between the acidity of the central NH of the sulfonamide linker of 6-9 and in vitro inhibitory activity against SaBPL was observed. Specifically, sulfonylcarbamate 8, with its highly acidic sulfonyl central NH, as evaluated by 1H NMR spectroscopy, showed exceptional potency (K i = 10.3 ± 3.8 nM). Furthermore, three inhibitors demonstrated minimum inhibitory concentrations of 16-32 μg/mL against clinical methicillin-resistant S. aureus (MRSA) strains.
Collapse
Affiliation(s)
- Damian L Stachura
- Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John T Kalyvas
- Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Stachura DL, Nguyen S, Polyak SW, Jovcevski B, Bruning JB, Abell AD. A New 1,2,3-Triazole Scaffold with Improved Potency against Staphylococcus aureus Biotin Protein Ligase. ACS Infect Dis 2022; 8:2579-2585. [PMID: 36399035 DOI: 10.1021/acsinfecdis.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus, a key ESKAPE bacteria, is responsible for most blood-based infections and, as a result, is a major economic healthcare burden requiring urgent attention. Here, we report in silico docking, synthesis, and assay of N1-diphenylmethyl triazole-based analogues (7-13) designed to interact with the entire binding site of S. aureus biotin protein ligase (SaBPL), an enzyme critical for the regulation of gluconeogenesis and fatty acid biosynthesis. The second aryl ring of these compounds enhances both SaBPL potency and whole cell activity against S. aureus relative to previously reported mono-benzyl triazoles. Analogues 12 and 13, with added substituents to better interact with the adenine binding site, are particularly potent, with Ki values of 6.01 ± 1.01 and 8.43 ± 0.73 nM, respectively. These analogues are the most active triazole-based inhibitors reported to date and, importantly, inhibit the growth of a clinical isolate strain of S. aureus ATCC 49775, with minimum inhibitory concentrations of 1 and 8 μg/mL, respectively.
Collapse
Affiliation(s)
- Damian L Stachura
- Department of Chemistry, School of Physical Sciences; Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide5005, SA, Australia
| | - Stephanie Nguyen
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide5005, SA, Australia
| | - Steven W Polyak
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide5005, Australia
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences; Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide5005, SA, Australia
| | - John B Bruning
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide5005, SA, Australia
| | - Andrew D Abell
- Department of Chemistry, School of Physical Sciences; Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide5005, SA, Australia
| |
Collapse
|
3
|
Sternicki LM, Nguyen S, Pacholarz KJ, Barran P, Pendini NR, Booker GW, Huet Y, Baltz R, Wegener KL, Pukala TL, Polyak SW. Biochemical characterisation of class III biotin protein ligases from Botrytis cinerea and Zymoseptoria tritici. Arch Biochem Biophys 2020; 691:108509. [PMID: 32717225 DOI: 10.1016/j.abb.2020.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Biotin protein ligase (BPL) is an essential enzyme in all kingdoms of life, making it a potential target for novel anti-infective agents. Whilst bacteria and archaea have simple BPL structures (class I and II), the homologues from certain eukaryotes such as mammals, insects and yeast (class III) have evolved a more complex structure with a large extension on the N-terminus of the protein in addition to the conserved catalytic domain. The absence of atomic resolution structures of any class III BPL hinders structural and functional analysis of these enzymes. Here, two new class III BPLs from agriculturally important moulds Botrytis cinerea and Zymoseptoria tritici were characterised alongside the homologue from the prototypical yeast Saccharomyces cerevisiae. Circular dichroism and ion mobility-mass spectrometry analysis revealed conservation of the overall tertiary and secondary structures of all three BPLs, corresponding with the high sequence similarity. Subtle structural differences were implied by the different thermal stabilities of the enzymes and their varied Michaelis constants for their interactions with ligands biotin, MgATP, and biotin-accepting substrates from different species. The three BPLs displayed different preferences for fungal versus bacterial protein substrates, providing further evidence that class III BPLs have a 'substrate validation' activity for selecting only appropriate proteins for biotinylation. Selective, potent inhibition of these three BPLs was demonstrated despite sequence and structural homology. This highlights the potential for targeting BPL for novel, selective antifungal therapies against B. cinerea, Z. tritici and other fungal species.
Collapse
Affiliation(s)
- Louise M Sternicki
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Stephanie Nguyen
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, South Australia, 5005, Australia
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole R Pendini
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Yoann Huet
- Bayer SAS CropScience, La Dargoire Research Centre, Lyon, 69263 Cedex 09, France
| | - Rachel Baltz
- Bayer SAS CropScience, La Dargoire Research Centre, Lyon, 69263 Cedex 09, France
| | - Kate L Wegener
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, South Australia, 5005, Australia
| | - Tara L Pukala
- School of Physical Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Steven W Polyak
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, South Australia, 5005, Australia.
| |
Collapse
|