1
|
Sileshi T, Makonnen E, Telele NF, Barclay V, Zumla A, Aklillu E. Variability in plasma rifampicin concentrations and role of SLCO1B1, ABCB1, AADAC2 and CES2 genotypes in Ethiopian patients with tuberculosis. Infect Dis (Lond) 2024; 56:308-319. [PMID: 38315168 PMCID: PMC11134291 DOI: 10.1080/23744235.2024.2309348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Rifampicin, a key drug against tuberculosis (TB), displays wide between-patient pharmacokinetics variability and concentration-dependent antimicrobial effect. We investigated variability in plasma rifampicin concentrations and the role of SLCO1B1, ABCB1, arylacetamide deacetylase (AADAC) and carboxylesterase 2 (CES-2) genotypes in Ethiopian patients with TB. METHODS We enrolled adult patients with newly diagnosed TB (n = 119) who had received 2 weeks of rifampicin-based anti-TB therapy. Venous blood samples were obtained at three time points post-dose. Genotypes for SLCO1B1 (c.388A > G, c.521T > C), ABCB1 (c.3435C > T, c.4036A > G), AADACc.841G > A and CES-2 (c.269-965A > G) were determined. Rifampicin plasma concentration was quantified using LC-MS/MS. Predictors of rifampicin Cmax and AUC0-7 h were analysed. RESULTS The median rifampicin Cmax and AUC0-7 were 6.76 µg/mL (IQR 5.37-8.48) and 17.05 µg·h/mL (IQR 13.87-22.26), respectively. Only 30.3% of patients achieved the therapeutic efficacy threshold (Cmax>8 µg/mL). The allele frequency for SLCO1B1*1B (c.388A > G), SLCO1B1*5 (c.521T > C), ABCB1 c.3435C > T, ABCB1c.4036A > G, AADAC c.841G > A and CES-2 c.269-965A > G were 2.2%, 20.2%, 24.4%, 14.6%, 86.1% and 30.6%, respectively. Sex, rifampicin dose and ABCB1c.4036A > G, genotypes were significant predictors of rifampicin Cmax and AUC0-7. AADACc.841G > A genotypes were significant predictors of rifampicin Cmax. There was no significant influence of SLCO1B1 (c.388A > G, c.521T > C), ABCB1c.3435C > T and CES-2 c.269-965A > G on rifampicin plasma exposure variability. CONCLUSIONS Subtherapeutic rifampicin plasma concentrations occurred in two-thirds of Ethiopian TB patients. Rifampicin exposure varied with sex, dose and genotypes. AADACc.841G/G and ABCB1c.4036A/A genotypes and male patients are at higher risk of lower rifampicin plasma exposure. The impact on TB treatment outcomes and whether high-dose rifampicin is required to improve therapeutic efficacy requires further investigation.
Collapse
Affiliation(s)
- Tesemma Sileshi
- Department of Pharmacy, Ambo University, Ambo, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigus Fikrie Telele
- Department of Laboratory Medicines, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Barclay
- Department of Laboratory Medicines, Karolinska Institutet, Stockholm, Sweden
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Zhu M, Chen X, Hao Z, He Y, Han B, Tang S. SLCO1B1 variants and the risk of antituberculosis drug-induced hepatotoxicity: a systematic review and meta-analysis. Pharmacogenomics 2023; 24:931-942. [PMID: 38019119 DOI: 10.2217/pgs-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Aims: To evaluate the association between SLCO1B1 gene polymorphisms and susceptibility of antituberculosis drug-induced hepatotoxicity (ATDH). Methods: We searched the PubMed, Cochrane Library, Embase, Web of Science, Wan Fang and China National Knowledge Infrastructure database from inception to 2022. Results: Nine case-control studies with 1129 cases and 2203 controls were included. Among four SNPs reported in two or more studies, the final results indicated that SNP rs4149014 was significantly associated with decreased ATDH risk (dominant model, odds ratio: 0.73; 95% CI: 0.55-0.97; p = 0.03; allele model, odds ratio: 0.69; 95% CI: 0.55-0.86; p = 0.001), and the trial sequential analysis also confirmed this significant association. Conclusion: SLCO1B1 gene SNP rs4149014 was significantly associated with lower risk of ATDH susceptibility.
Collapse
Affiliation(s)
- Min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiwen He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
3
|
Yu J, Liu M, Mijiti X, Liu H, Wang Q, Yin C, Anwaierjiang A, Xu M, Li M, Deng L, Xiao H, Zhao X, Wan K, Li G, Yuan X. Association of Single-Nucleotide Polymorphisms in the VDR Gene with Tuberculosis and Infection of Beijing Genotype Mycobacterium tuberculosis. Infect Drug Resist 2023; 16:3157-3169. [PMID: 37235072 PMCID: PMC10208660 DOI: 10.2147/idr.s407595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Background The aim of the present study was to investigate the association between vitamin D receptor (VDR) gene polymorphism and tuberculosis susceptibility, as well as the potential interaction of host genetic factors with the heterogeneity of Mycobacterium tuberculosis in the population from Xinjiang, China. Methods From January 2019 to January 2020, we enrolled 221 tuberculosis patients as the case group and 363 staff with no clinical symptoms as the control group from four designated tuberculosis hospitals in southern Xinjiang, China. The polymorphisms of Fok I, Taq I, Apa I, Bsm I, rs3847987 and rs739837 in the VDR were detected by sequencing. M. tuberculosis isolates were collected from the case group and identified as Beijing or non-Beijing lineage by multiplex PCR. Propensity score (PS), univariate analysis and multivariable logistic regression models were used to perform the analysis. Results Our results showed that the allele and genotype frequencies of Fok I, Taq I, Apa I, Bsm I, rs3847987 and rs739837 in VDR were not correlated with tuberculosis susceptibility or lineages of M. tuberculosis. Two out of six loci of the VDR gene formed one haplotype block, and none of the haplotypes was found to correlate with tuberculosis susceptibility or lineages of M. tuberculosis infected. Conclusion Polymorphisms in the VDR gene may not indicate susceptibility to tuberculosis. There was also no evidence on the interaction between the VDR gene of host and the lineages of M. tuberculosis in the population from Xinjiang, China. Further studies are nonetheless required to prove our conclusions.
Collapse
Affiliation(s)
- Jinjie Yu
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, People’s Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830049, People’s Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830049, People’s Republic of China
| | - Chunjie Yin
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, People’s Republic of China
| | | | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830049, People’s Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Lele Deng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, People’s Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiuqin Yuan
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
| |
Collapse
|
4
|
Mehta K, Narayanan N, Heysell SK, Bisson GP, Subbian S, Kurepina N, Kreiswirth BN, Vinnard C. Pharmacogenetic variability and the probability of site of action target attainment during tuberculosis meningitis treatment: A physiologically based pharmacokinetic modeling and simulations study. Tuberculosis (Edinb) 2022; 137:102271. [PMID: 36375279 DOI: 10.1016/j.tube.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE AND METHODS Our objective was to investigate the role of patient pharmacogenetic variability in determining site of action target attainment during tuberculous meningitis (TBM) treatment. Rifampin and isoniazid PBPK model that included SLCO1B1 and NAT2 effects on exposures respectively were obtained from literature, modified, and validated using available cerebrospinal-fluid (CSF) concentrations. Population simulations of isoniazid and rifampin concentrations in brain interstitial fluid and probability of target attainment according to genotypes and M. tuberculosis MIC levels, under standard and intensified dosing, were conducted. RESULTS The rifampin and isoniazid model predicted steady-state drug concentration within brain interstitial fluid matched with the observed CSF concentrations. At MIC level of 0.25 mg/L, 57% and 23% of the patients with wild type and heterozygous SLCO1B1 genotype respectively attained the target in CNS with rifampin standard dosing, improving to 98% and 91% respectively with 35 mg/kg dosing. At MIC level of 0.25 mg/L, 33% of fast acetylators attained the target in CNS with isoniazid standard dosing, improving to 90% with 7.5 mg/kg dosing. CONCLUSION In this study, the combined effects of pharmacogenetic and M. tuberculosis MIC variability were potent determinants of target attainment in CNS. The potential for genotype-guided dosing during TBM treatment should be further explored in prospective clinical studies.
Collapse
Affiliation(s)
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Gregory P Bisson
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Newark, NJ, USA
| | - Natalia Kurepina
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barry N Kreiswirth
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | |
Collapse
|
5
|
Sileshi T, Mekonen G, Makonnen E, Aklillu E. Effect of Genetic Variations in Drug-Metabolizing Enzymes and Drug Transporters on the Pharmacokinetics of Rifamycins: A Systematic Review. Pharmgenomics Pers Med 2022; 15:561-571. [PMID: 35693129 PMCID: PMC9176238 DOI: 10.2147/pgpm.s363058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Rifamycins are a novel class of antibiotics clinically approved for tuberculosis chemotherapy. They are characterized by high inter-individual variation in pharmacokinetics. This systematic review aims to present the contribution of genetic variations in drug-metabolizing enzymes and transporter proteins to the inter-individual variation of rifamycin pharmacokinetics. Method We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines. The search for relevant studies was done through PubMed, Embase, Web of Science, and Scopus databases. Studies reporting single nucleotide polymorphism in drug transporters and metabolizing enzymes' influence on rifamycin pharmacokinetics were solely included. Two reviewers independently performed data extraction. Results The search identified 117 articles of which 15 fulfilled the eligibility criteria and were included in the final data synthesis. The single nucleotides polymorphism in the drug transporters SLCO1B1 rs4149032, rs2306283, rs11045819, and ABCB1 rs1045642 for rifampicin, drug metabolizing enzyme AADAC rs1803155 for rifapentine and CES2 c.-22263A>G (g.738A>G) for rifampicin partly contributes to the variability of pharmacokinetic parameters in tuberculosis patients. Conclusion The pharmacokinetics of rifamycins is influenced by genetic variation of drug-metabolizing enzymes and transporters. Controlled clinical studies are, however, required to establish these relationships.
Collapse
Affiliation(s)
- Tesemma Sileshi
- Department of Pharmacy, Ambo University, Ambo, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Sekhar Miraj S, Vyas N, Kurian SJ, Baral T, Thomas L, Reddy BS, Munisamy M, Banerjee M, Rao M. Vitamin D receptor gene polymorphism and vitamin D supplementation on clinical/ treatment outcome in tuberculosis: current and future perspectives. Expert Rev Anti Infect Ther 2022; 20:1179-1186. [PMID: 35608034 DOI: 10.1080/14787210.2022.2081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is a transnational public health concern, which requires more precise treatment strategies than the existing approaches. Vitamin D modulates the inflammatory and immune response to the disease. Robust evidence shows that vitamin D deficiency and its receptor gene polymorphism influence the susceptibility to TB and the outcome of the anti-tubercular treatment (ATT). However, in the different populations, these findings were inconsistent and even contradictory. AREAS COVERED The current review focuses on the association between vitamin D receptor (VDR) gene polymorphism with the risk of development of TB disease and response to the ATT. Additionally, it reviews various systematic reviews and meta-analyses on the impact of vitamin D supplements on both clinical and treatment outcomes in TB patients. EXPERT OPINION Although the majority of the findings rule out the benefits of the supplementation, sufficient evidence is available to warrant larger epidemiological research that should be aimed to generate possible interaction among the VDR polymorphism, vitamin D status, and the outcome in TB. We conclude that establishing such an association in different ethnic populations will help design nutrigenomics- or pharmacogenomics-based vitamin D supplementation to develop a personalized medicine approach to flatten the curve of TB disease.
Collapse
Affiliation(s)
- Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Navya Vyas
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India.,Department of Health Policy, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - B Shrikar Reddy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Khan A, Abbas M, Verma S, Verma S, Rizvi AA, Haider F, Raza ST, Mahdi F. Genetic Variants and Drug Efficacy in Tuberculosis: A Step toward Personalized Therapy. Glob Med Genet 2022; 9:90-96. [PMID: 35707778 PMCID: PMC9192167 DOI: 10.1055/s-0042-1743567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022] Open
Abstract
AbstractTuberculosis (TB) continues to be a major infectious disease affecting individuals worldwide. Current TB treatment strategy recommends the standard short-course chemotherapy regimen containing first-line drug, i.e., isoniazid, rifampicin, pyrazinamide, and ethambutol to treat patients suffering from drug-susceptible TB. Although Mycobacterium tuberculosis, the causing agent, is susceptible to drugs, some patients do not respond to the treatment or treatment may result in serious adverse reactions. Many studies revealed that anti-TB drug-related toxicity is associated with genetic variations, and these variations may also influence attaining maximum drug concentration. Thus, inter-individual diversities play a characteristic role by influencing the genes involved in drug metabolism pathways. The development of pharmacogenomics could bring a revolution in the field of treatment, and the understanding of germline variants may give rise to optimized targeted treatments and refine the response to standard therapy. In this review, we briefly introduced the field of pharmacogenomics with the evolution in genetics and discussed the pharmacogenetic impact of genetic variations on genes involved in the activities, such as anti-TB drug transportation, metabolism, and gene regulation.
Collapse
Affiliation(s)
- Almas Khan
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Mohammad Abbas
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Sushma Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Shrikant Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Aliya Abbas Rizvi
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Fareya Haider
- Department of Microbiology, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Syed Tasleem Raza
- Department of Biochemistry, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Farzana Mahdi
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Levano KS, Jaramillo-Valverde L, Tarazona DD, Sanchez C, Capristano S, Vásquez-Loarte T, Solari L, Mendoza-Ticona A, Soto A, Rojas C, Zegarra-Chapoñan R, Guio H. Allelic and genotypic frequencies of NAT2, CYP2E1, and AADAC genes in a cohort of Peruvian tuberculosis patients. Mol Genet Genomic Med 2021; 9:e1764. [PMID: 34510815 PMCID: PMC8580101 DOI: 10.1002/mgg3.1764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/02/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022] Open
Abstract
Background We determined the frequency of genetic polymorphisms in three anti‐TB drug metabolic proteins previously reported: N‐acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1), and arylacetamide deacetylase (AADAC) within a Peruvian population in a cohort of TB patients. Methods We genotyped SNPs rs1041983, rs1801280, rs1799929, rs1799930, rs1208, and rs1799931 for NAT2; rs3813867 and rs2031920 for CYP2E1; and rs1803155 for AADAC in 395 participants completed their antituberculosis treatment. Results Seventy‐four percent of the participants are carriers of slow metabolizer genotypes: NAT2*5, NAT2*6, and NAT2*7, which increase the sensitivity of INH at low doses and increase the risk of drug‐induced liver injuries. Sixty‐four percent are homozygous for the wild‐type CYP2E1*1A allele, which could increase the risk of hepatotoxicity. However, 16% had a NAT2 fast metabolizer phenotype which could increase the risk of acquiring resistance to INH, thereby increasing the risk of multidrug‐resistant (MDR) or treatment failure. The frequency of rs1803155 (AADAC*2 allele) was higher (99.9%) in Peruvians than in European American, African American, Japanese, and Korean populations. Conclusions This high prevalence of slow metabolizers for isoniazid in the Peruvian population should be further studied and considered to help individualize drug regimens, especially in countries with a great genetic diversity like Peru. These data will help the Peruvian National Tuberculosis Control Program develop new strategies for therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alberto Mendoza-Ticona
- Estrategia Sanitaria Nacional de Prevención y Control de Tuberculosis en el Perú, MINSA, Lima, Peru
| | - Alonso Soto
- Instituto de investigación en Ciencias Biomédicas (INICIB), Facultad de Medicina, Universidad Ricardo Palma, Lima, Peru.,Departamento de Medicina, Hospital Nacional Hipólito Unanue, Lima, Peru
| | | | | | - Heinner Guio
- Instituto Nacional de Salud, Lima, Peru.,Universidad de Huánuco, Huánuco, Peru.,Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
9
|
Kim ES, Kwon BS, Park JS, Chung JY, Seo SH, Park KU, Song J, Yoon S, Lee JH. Relationship among genetic polymorphism of SLCO1B1, rifampicin exposure and clinical outcomes in patients with active pulmonary tuberculosis. Br J Clin Pharmacol 2021; 87:3492-3500. [PMID: 33538008 DOI: 10.1111/bcp.14758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
AIMS Rifampicin is a key drug for the treatment of tuberculosis (TB). Little is known for the relationship between the rifampicin pharmacokinetics and genetic polymorphisms in the Asian population. We aimed to investigate relationship between genetic polymorphism of SLCO1B1 and rifampicin exposure and its impact on clinical outcomes in Korean patients with active pulmonary TB. METHODS From February 2016 to December 2019, patients with active pulmonary TB who were taking rifampicin for >1 week were prospectively enrolled. Serial or 1-time blood sampling was conducted to determine rifampicin concentrations. The genotype of 4 single nucleotide polymorphisms of SLCO1B1 was determined. To estimate the drug clearance and exposure, population pharmacokinetics analysis was conducted. Clinical outcomes such as time to acid-fast bacteria culture conversion, chest radiograph score changes from baseline, and all-cause mortality were also evaluated. The exposure among different SLCO1B1 genotype was compared and relationship between drug exposure and clinical outcomes were explored. RESULTS A total of 105 patients (70 males and 35 females) were included in the final analysis. The mean age of patients was 55.4 years. The mean drug clearance and exposure were 13.6 L/h and 57.9 mg h/L, respectively. The genetic polymorphisms of SLCO1B1 were not related to rifampicin clearance or exposure. As the rifampicin exposure increased, the chest radiographs improved significantly, but the duration of acid-fast bacteria culture conversion was not related to the drug exposure. CONCLUSION SLCO1B1 gene polymorphisms did not influence rifampicin concentrations and clinical outcomes in Korean patients with active pulmonary TB.
Collapse
Affiliation(s)
- Eun Sun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byoung Soo Kwon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jong Sun Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Bundang Hospital, Seongnam, South Korea.,Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | | | - Seonghae Yoon
- Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|