1
|
Jawhara S. How Do Polyphenol-Rich Foods Prevent Oxidative Stress and Maintain Gut Health? Microorganisms 2024; 12:1570. [PMID: 39203412 PMCID: PMC11356206 DOI: 10.3390/microorganisms12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety of factors that contribute to deteriorating gut health, especially for IBD patients. Many alternative therapeutic strategies have been developed against oxidative stress along with conventional therapy to alleviate IBD pathogenesis. Polyphenol-rich foods have attracted growing interest from scientists due to their antioxidant properties. Polyphenols are natural compounds found in plants, fruits, vegetables, and nuts that exhibit antioxidant properties and protect the body from oxidative damage. This review presents an overview of polyphenol benefits and describes the different types of polyphenols. It also discusses polyphenols' role in inhibiting oxidative stress and fungal growth prevention. Overall, this review highlights how a healthy and balanced diet and avoiding the industrialized lifestyles of our modern society can minimize oxidative stress damage and protect against pathogen infections. It also highlights how polyphenol-rich foods play an important role in protecting against oxidative stress and fungal growth.
Collapse
Affiliation(s)
- Samir Jawhara
- Centre National de la Recherche Scientifique, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; ; Tel.: +33-(0)3-20-62-35-46
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Camaioni L, Ustyanowski B, Buisine M, Lambert D, Sendid B, Billamboz M, Jawhara S. Natural Compounds with Antifungal Properties against Candida albicans and Identification of Hinokitiol as a Promising Antifungal Drug. Antibiotics (Basel) 2023; 12:1603. [PMID: 37998805 PMCID: PMC10668714 DOI: 10.3390/antibiotics12111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Candida albicans is an opportunistic yeast that causes most fungal infections. C. albicans has become increasingly resistant to antifungal drugs over the past decade. Our study focused on the identification of pure natural compounds for the development of antifungal medicines. A total of 15 natural compounds from different chemical families (cinnamic derivatives, aromatic phenols, mono- and sesquiterpenols, and unclassified compounds) were screened in this study. Among these groups, hinokitiol (Hi), a natural monoterpenoid extracted from the wood of the cypress family, showed excellent anti-C. albicans activity, with a MIC value of 8.21 µg/mL. Hi was selected from this panel for further investigation to assess its antifungal and anti-inflammatory properties. Hi exhibited significant antifungal activity against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. It also reduced biofilm formation and hyphal growth. Treatment with Hi protected Caenorhabditis elegans against infection with C. albicans and enhanced the expression of antimicrobial genes in worms infected with C. albicans. Aside from its antifungal activities against C. albicans, Hi challenge attenuated the LPS-induced expression of pro-inflammatory cytokines (IL-6, IL-1β, and CCL-2) in macrophages. Overall, Hi is a natural compound with antifungal and anti-inflammatory properties, making Hi a promising platform with which to fight against fungal infections.
Collapse
Affiliation(s)
- Louis Camaioni
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Bastien Ustyanowski
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Mathys Buisine
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Dylan Lambert
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
3
|
Jawhara S. Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection. Microorganisms 2023; 11:1556. [PMID: 37375058 DOI: 10.3390/microorganisms11061556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Western diets are rapidly spreading due to globalization, causing an increase in obesity and diseases of civilization. These Western diets are associated with changes in the gut microbiota related to intestinal inflammation. This review discusses the adverse effects of Western diets, which are high in fat and sugar and low in vegetable fiber, on the gut microbiota. This leads to gut dysbiosis and overgrowth of Candida albicans, which is a major cause of fungal infection worldwide. In addition to an unhealthy Western diet, other factors related to disease development and gut dysbiosis include smoking, excessive alcohol consumption, lack of physical activity, prolonged use of antibiotics, and chronic psychological stress. This review suggests that a diversified diet containing vegetable fiber, omega-3 polyunsaturated fatty acids, vitamins D and E, as well as micronutrients associated with probiotic or prebiotic supplements can improve the biodiversity of the microbiota, lead to short-chain fatty acid production, and reduce the abundance of fungal species in the gut. The review also discusses a variety of foods and plants that are effective against fungal overgrowth and gut dysbiosis in traditional medicine. Overall, healthy diets and lifestyle factors contribute to human well-being and increase the biodiversity of the gut microbiota, which positively modulates the brain and central nervous system.
Collapse
Affiliation(s)
- Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, F-59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Jawhara S. Editorial of Special Issue "Human Pathogenic Fungi: Host-Pathogen Interactions and Virulence". Microorganisms 2023; 11:microorganisms11040963. [PMID: 37110386 PMCID: PMC10142418 DOI: 10.3390/microorganisms11040963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Most individuals harbour several species of yeast of the genus Candida, which are considered true symbionts of the human gut microbiota [...].
Collapse
Affiliation(s)
- Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, F-59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Oleic Acid and Palmitic Acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii Exhibit Anti-Inflammatory and Antifungal Properties. Microorganisms 2022; 10:microorganisms10091803. [PMID: 36144406 PMCID: PMC9504516 DOI: 10.3390/microorganisms10091803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
A decrease in populations of Bacteroides thetaiotaomicron and Lactobacillus johnsonii is observed during the development of colitis and fungal overgrowth, while restoration of these populations reduces inflammatory parameters and fungal overgrowth in mice. This study investigated the effect of two fatty acids from B. thetaiotaomicron and L. johnsonii on macrophages and Caco-2 cells, as well as their impact on the inflammatory immune response and on Candida glabrata overgrowth in a murine model of dextran sulfate sodium (DSS)-induced colitis. Oleic acid (OA) and palmitic acid (PA) from L. johnsonii and B. thetaiotaomicron were detected during their interaction with epithelial cells from colon samples. OA alone or OA combined with PA (FAs) reduced the expression of proinflammatory mediators in intestinal epithelial Caco-2 cells challenged with DSS. OA alone or FAs increased FFAR1, FFAR2, AMPK, and IL-10 expression in macrophages. Additionally, OA alone or FAs decreased COX-2, TNFα, IL-6, and IL-12 expression in LPS-stimulated macrophages. In the DSS murine model, oral administration of FAs reduced inflammatory parameters, decreased Escherichia coli and Enterococcus faecalis populations, and eliminated C. glabrata from the gut. Overall, these findings provide evidence that OA combined with PA exhibits anti-inflammatory and antifungal properties.
Collapse
|
6
|
Shockwaves Increase In Vitro Resilience of Rhizopus oryzae Biofilm under Amphotericin B Treatment. Int J Mol Sci 2022; 23:ijms23169226. [PMID: 36012494 PMCID: PMC9409157 DOI: 10.3390/ijms23169226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acoustical biophysical therapies, including ultrasound, radial pressure waves, and shockwaves, have been shown to harbor both a destructive and regenerative potential depending on physical treatment parameters. Despite the clinical relevance of fungal biofilms, little work exits comparing the efficacy of these modalities on the destruction of fungal biofilms. This study evaluates the impact of acoustical low-frequency ultrasound, radial pressure waves, and shockwaves on the viability and proliferation of in vitro Rhizopus oryzae biofilm under Amphotericin B induced apoptosis. In addition, the impact of a fibrin substrate in comparison with a traditional polystyrene well-plate one is explored. We found consistent, mechanically promoted increased Amphotericin B efficacy when treating the biofilm in conjunction with low frequency ultrasound and radial pressure waves. In contrast, shockwave induced effects of mechanotransduction results in a stronger resilience of the biofilm, which was evident by a marked increase in cellular viability, and was not observed in the other types of acoustical pressure waves. Our findings suggest that fungal biofilms not only provide another model for mechanistical investigations of the regenerative properties of shockwave therapies, but warrant future investigations into the clinical viability of the therapy.
Collapse
|
7
|
Chen P, De Schutter K, Pauwels J, Gevaert K, Van Damme EJM, Smagghe G. Binding of Orysata lectin induces an immune response in insect cells. INSECT SCIENCE 2022; 29:717-729. [PMID: 34473412 DOI: 10.1111/1744-7917.12968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In mammals, plant lectinshave been shown to possess immunomodulatory properties, acting in both the innate and adaptive immune system to modulate the production of mediators of the immune response, ultimately improving host defences. At present, knowledge of immunomodulatory effects of plant lectins in insects is scarce. Treatment of insect cells with the Orysa sativa lectin, Orysata, was previously reported to induce cell aggregation, mimicking the immune process of encapsulation. In this project we investigated the potential immunomodulatory effects of this mannose-binding lectin using Drosophila melanogaster S2 cells. Identification of the Orysata binding partners on the surface of S2 cells through a pull-down assay and proteomic analysis revealed 221 putative interactors, several of which were immunity-related proteins. Subsequent qPCR analysis revealed the upregulation of Toll- and immune deficiency (IMD)-regulated antimicrobial peptides (Drs, Mtk, AttA, and Dpt) and signal transducers (Rel and Hid) belonging to the IMD pathway. In addition, the iron-binding protein Transferrin 3 was identified as a putative interactor for Orysata, and treatment of S2 cells with Orysata was shown to reduce the intracellular iron concentration. All together, we believe these results offer a new perspective on the effects by which plant lectins influence insect cells and contribute to the study of their immunomodulatory properties.
Collapse
Affiliation(s)
- Pengyu Chen
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jarne Pauwels
- Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Els J M Van Damme
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
How Gut Bacterial Dysbiosis Can Promote Candida albicans Overgrowth during Colonic Inflammation. Microorganisms 2022; 10:microorganisms10051014. [PMID: 35630457 PMCID: PMC9147621 DOI: 10.3390/microorganisms10051014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is a commensal opportunistic yeast, which is capable of colonising many segments of the human digestive tract. Excessive C. albicans overgrowth in the gut is associated with multiple risk factors such as immunosuppression, antibiotic treatment associated with changes to the gut microbiota and digestive mucosa that support C. albicans translocation across the digestive intestinal barrier and haematogenous dissemination, leading to invasive fungal infections. The C. albicans cell wall contains mannoproteins, β-glucans, and chitin, which are known to trigger a wide range of host cell activities and to circulate in the blood during fungal infection. This review describes the role of C. albicans in colonic inflammation and how various receptors are involved in the immune defence against C. albicans with a special focus on the role of mannose-binding lectin (MBL) and TLRs in intestinal homeostasis and C. albicans sensing. This review highlights gut microbiota dysbiosis during colonic inflammation in a dextran sulphate sodium (DSS)-induced colitis murine model and the effect of fungal glycan fractions, in particular β-glucans and chitin, on the modification of the gut microbiota, as well as how these glycans modulate the immuno-inflammatory response of the host.
Collapse
|
9
|
Mena L, Billamboz M, Charlet R, Desprès B, Sendid B, Ghinet A, Jawhara S. Two New Compounds Containing Pyridinone or Triazine Heterocycles Have Antifungal Properties against Candida albicans. Antibiotics (Basel) 2022; 11:antibiotics11010072. [PMID: 35052949 PMCID: PMC8773291 DOI: 10.3390/antibiotics11010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Candidiasis, caused by the opportunistic yeast Candida albicans, is the most common fungal infection today. Resistance of C. albicans to current antifungal drugs has emerged over the past decade leading to the need for novel antifungal agents. Our aim was to select new antifungal compounds by library-screening methods and to assess their antifungal effects against C. albicans. After screening 90 potential antifungal compounds from JUNIA, a chemical library, two compounds, 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-3,6-dimethylpyridin-2(1H)-one (PYR) and (Z)-N-(2-(4,6-dimethoxy-1,3,5-triazin-2-yl)vinyl)-4-methoxyaniline (TRI), were identified as having potential antifungal activity. Treatment with PYR and TRI resulted in a significant reduction of C. albicans bioluminescence as well as the number of fungal colonies, indicating rapid fungicidal activity. These two compounds were also effective against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. PYR and TRI had an inhibitory effect on Candida biofilm formation and reduced the thickness of the mannan cell wall. In a Caenorhabditis elegans infection model, PYR and TRI decreased the mortality of nematodes infected with C. albicans and enhanced the expression of antimicrobial genes that promote C. albicans elimination. Overall, PYR and TRI showed antifungal properties against C. albicans by exerting fungicidal activities and enhancing the antimicrobial gene expression of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Laura Mena
- UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France; (L.M.); (R.C.); (B.D.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Muriel Billamboz
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France; (M.B.); (A.G.)
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Rogatien Charlet
- UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France; (L.M.); (R.C.); (B.D.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Bérangère Desprès
- UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France; (L.M.); (R.C.); (B.D.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Boualem Sendid
- UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France; (L.M.); (R.C.); (B.D.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Alina Ghinet
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France; (M.B.); (A.G.)
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Faculty of Chemistry, ‘Alexandru Ioan Cuza’ University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi, Romania
| | - Samir Jawhara
- UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France; (L.M.); (R.C.); (B.D.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
- Correspondence: ; Tel.: +33-(0)3-2062-3546; Fax: +33-(0)3-2062-3416
| |
Collapse
|
10
|
Amara AAAF. Improving Animal Immunity to Prevent Fungal Infections with Folk Remedies and Advanced Medicine. FUNGAL DISEASES IN ANIMALS 2021:127-162. [DOI: 10.1007/978-3-030-69507-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
H89 Treatment Reduces Intestinal Inflammation and Candida albicans Overgrowth in Mice. Microorganisms 2020; 8:microorganisms8122039. [PMID: 33352792 PMCID: PMC7766101 DOI: 10.3390/microorganisms8122039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022] Open
Abstract
Deregulation of the dynamic crosstalk between the gut microbiota, intestinal epithelial cells, and immune cells is critically involved in the development of inflammatory bowel disease and the overgrowth of opportunistic pathogens, including the human opportunistic fungus Candida albicans. In the present study, we assessed the effect of N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89), a protein kinase A inhibitor, on the migration of macrophages to C. albicans through dextran sulphate sodium (DSS)-challenged Caco-2 cells. We also investigated the impact of H89 on intestinal inflammation and C. albicans clearance from the gut, and determined the diversity of the gut microbiota in a murine model of DSS-induced colitis. H89 reduced the migration of macrophages to C. albicans through DSS-challenged Caco-2 cells. In addition, H89 decreased C. albicans viability and diminished the expression of pro-inflammatory cytokines and innate immune receptors in macrophages and colonic epithelial Caco-2 cells. In mice with DSS-induced colitis, H89 attenuated the clinical and histological scores of inflammation and promoted the elimination of C. albicans from the gut. H89 administration to mice decreased the overgrowth of Escherichia coli and Enterococcus faecalis populations while Lactobacillus johnsonii populations increased significantly. Overall, H89 reduced intestinal inflammation and promoted the elimination of C. albicans from the gut.
Collapse
|
12
|
Jawhara S. How to boost the immune defence prior to respiratory virus infections with the special focus on coronavirus infections. Gut Pathog 2020; 12:47. [PMID: 33062058 PMCID: PMC7549427 DOI: 10.1186/s13099-020-00385-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2, which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. One of the most worrying features of COVID-19 is a phenomenon known as the "cytokine storm", which is a rapid overreaction of the immune system. Additionally, coagulation abnormalities, thrombocytopenia and digestive symptoms, including anorexia, vomiting, and diarrhea, are often observed in critically ill patients with COVID-19. Baker's yeast β-glucan, a natural immunomodulatory component derived from Saccharomyces cerevisiae, primes the immune system to respond better to any microbial infection. Our previous studies have shown that oral administration of yeast β-glucans decreased the diarrhoea, modulated cytokine expression, and reduced the intestinal inflammation. Additionally, we showed that β-glucan fractions decreased coagulation in plasma and reduced the activation of platelets. During the period of home confinement facing individuals during the COVID-19 pandemic, our immune defence could be weakened by different factors, including stress, anxiety and poor nutrition, while a healthy diet rich in vitamins C and D can reinforce the immune defence and reduce the risk of microbial infections. Additionally, β-glucan can be used to strengthen the immune defence in healthy individuals prior to any possible viral infections. This short review focuses on the role of baker's yeast β-glucan, with a healthy diet rich in natural vitamins C and D, in addition to a healthy gut microbiota can provide synergistic immune system support, helping the body to naturally defend prior to respiratory virus infections, until stronger options such as vaccines are available.
Collapse
Affiliation(s)
- Samir Jawhara
- grid.503422.20000 0001 2242 6780CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, Université Lille, 1 Place Verdun, 59000 Lille, France ,grid.503422.20000 0001 2242 6780University of Lille, 59000 Lille, France
| |
Collapse
|