1
|
Aggarwal M, Patra A, Awasthi I, George A, Gagneja S, Gupta V, Capalash N, Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur J Med Chem 2024; 279:116833. [PMID: 39243454 DOI: 10.1016/j.ejmech.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The growing prevalence of MDR and XDR bacterial pathogens is posing a critical threat to global health. Traditional antibiotic development paths have encountered significant challenges and are drying up thus necessitating innovative approaches. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, offers a promising alternative to combat resistant pathogens. By leveraging pre-existing safety and efficacy data, drug repurposing accelerates the development of new antimicrobial therapy regimes. This review explores the potential of repurposing existing FDA approved drugs against the ESKAPE and other clinically relevant bacterial pathogens and delves into the identification of suitable drug candidates, their mechanisms of action, and the potential for combination therapies. It also describes clinical trials and patent protection of repurposed drugs, offering perspectives on this evolving realm of therapeutic interventions against drug resistance.
Collapse
Affiliation(s)
- Manya Aggarwal
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Anushree Patra
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Ishita Awasthi
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Annu George
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Simran Gagneja
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Multi-speciality hospital, Sector 16, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Departmen of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Kamel NA, Aboshanab KM, Elsayed KM. Colistin, doxycycline and Labetalol-meropenem combination are the most active against XDR-Carbapenem-resistant Acinetobacter baumannii: Role of a novel transferrable plasmid conferring carbapenem resistance. Diagn Microbiol Infect Dis 2024; 110:116558. [PMID: 39413660 DOI: 10.1016/j.diagmicrobio.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to evaluate the antimicrobial susceptibility and combination of a beta-blocker, labetalol (LAB) and meropenem (MEM) on Carbapenem-resistant (CR) A. baumannii clinical isolates. A total of 43 CR- A. baumannii were isolated of which 37 (86.6 %) and 28 (65 %) exhibited MDR and XDR phenotypes, respectively. Colistin and doxycycline still retain their activities in 93.1 % and 72.1 % of the isolates, respectively. Combining MEM with LAB at 0.25 mg /mL, decreased MIC values in 91.4 % (32/35) however, at 0.5 mg /mL, it decreased MIC value and restored susceptibility to MEM in 100 % and 91.4 % of the tested isolates, respectively. A novel transferable plasmid pAcbGIM3 harboring aph-3', blaoxa-58,blaGIM3 and blaCTX-M3 and eight mobile genetic elements were successfully isolated from a pan-drug resistant (PDR) isolate. In conclusion, LAB-MEM is a promising combination and should be clinically examined. This is the first report of a transmissible plasmid harboring blaGIM3 gene in Egypt.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Cairo 11566, Egypt; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.
| | - Khaled M Elsayed
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| |
Collapse
|
3
|
Knapp K, Klasinc R, Koren A, Siller M, Dingelmaier-Hovorka R, Drach M, Sanchez J, Chromy D, Kranawetter M, Grimm C, Bergthaler A, Kubicek S, Stockinger H, Stary G. Combination of compound screening with an animal model identifies pentamidine to prevent Chlamydia trachomatis infection. Cell Rep Med 2024; 5:101643. [PMID: 38981484 PMCID: PMC11293347 DOI: 10.1016/j.xcrm.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Chlamydia trachomatis (Ct) is the most common cause for bacterial sexually transmitted infections (STIs) worldwide with a tremendous impact on public health. With the aim to unravel novel targets of the chlamydia life cycle, we screen a compound library and identify 28 agents to significantly reduce Ct growth. The known anti-infective agent pentamidine-one of the top candidates of the screen-shows anti-chlamydia activity in low concentrations by changing the metabolism of host cells impairing chlamydia growth. Furthermore, it effectively decreases the Ct burden upon local or systemic application in mice. Pentamidine also inhibits the growth of Neisseria gonorrhea (Ng), which is a common co-infection of Ct. The conducted compound screen is powerful in exploring antimicrobial compounds against Ct in a medium-throughput format. Following thorough in vitro and in vivo assessments, pentamidine emerges as a promising agent for topical prophylaxis or treatment against Ct and possibly other bacterial STIs.
Collapse
Affiliation(s)
- Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Magdalena Siller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Juan Sanchez
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - David Chromy
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Marlene Kranawetter
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria.
| |
Collapse
|
4
|
Svedholm E, Bruce B, Parcell BJ, Coote PJ. Repurposing Mitomycin C in Combination with Pentamidine or Gentamicin to Treat Infections with Multi-Drug-Resistant (MDR) Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:177. [PMID: 38391563 PMCID: PMC10886254 DOI: 10.3390/antibiotics13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The aims of this study were (i) to determine if the combination of mitomycin C with pentamidine or existing antibiotics resulted in enhanced efficacy versus infections with MDR P. aeruginosa in vivo; and (ii) to determine if the doses of mitomycin C and pentamidine in combination can be reduced to levels that are non-toxic in humans but still retain antibacterial activity. Resistant clinical isolates of P. aeruginosa, a mutant strain over-expressing the MexAB-OprM resistance nodulation division (RND) efflux pump and a strain with three RND pumps deleted, were used. MIC assays indicated that all strains were sensitive to mitomycin C, but deletion of three RND pumps resulted in hypersensitivity and over-expression of MexAB-OprM caused some resistance. These results imply that mitomycin C is a substrate of the RND efflux pumps. Mitomycin C monotherapy successfully treated infected Galleria mellonella larvae, albeit at doses too high for human administration. Checkerboard and time-kill assays showed that the combination of mitomycin C with pentamidine, or the antibiotic gentamicin, resulted in synergistic inhibition of most P. aeruginosa strains in vitro. In vivo, administration of a combination therapy of mitomycin C with pentamidine, or gentamicin, to G. mellonella larvae infected with P. aeruginosa resulted in enhanced efficacy compared with monotherapies for the majority of MDR clinical isolates. Notably, the therapeutic benefit conferred by the combination therapy occurred with doses of mitomycin C close to those used in human medicine. Thus, repurposing mitomycin C in combination therapies to target MDR P. aeruginosa infections merits further investigation.
Collapse
Affiliation(s)
- Elin Svedholm
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin Bruce
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin J Parcell
- NHS Tayside, Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Peter J Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
5
|
Tang M, Zhao D, Liu S, Zhang X, Yao Z, Chen H, Zhou C, Zhou T, Xu C. The Properties of Linezolid, Rifampicin, and Vancomycin, as Well as the Mechanism of Action of Pentamidine, Determine Their Synergy against Gram-Negative Bacteria. Int J Mol Sci 2023; 24:13812. [PMID: 37762115 PMCID: PMC10530309 DOI: 10.3390/ijms241813812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine-antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325015, China;
| | - Sichen Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Hule Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Cui Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| | - Chunquan Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (M.T.); (S.L.); (X.Z.); (Z.Y.); (H.C.); (C.Z.)
| |
Collapse
|
6
|
Fletcher M, McCormack A, Parcell BJ, Coote PJ. Combination Therapy with Ciprofloxacin and Pentamidine against Multidrug-Resistant Pseudomonas aeruginosa: Assessment of In Vitro and In Vivo Efficacy and the Role of Resistance-Nodulation-Division (RND) Efflux Pumps. Antibiotics (Basel) 2023; 12:1236. [PMID: 37627656 PMCID: PMC10451767 DOI: 10.3390/antibiotics12081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this work was to (i) evaluate the efficacy of a combination treatment of pentamidine with ciprofloxacin against Galleria mellonella larvae infected with an MDR strain of P. aeruginosa and (ii) determine if pentamidine acts as an efflux-pump inhibitor. Resistant clinical isolates, mutant strains overexpressing one of three RND efflux pumps (MexAB-OprM, MexCD-OprJ, and MexEF-OprN), and a strain with the same three pumps deleted were used. MIC assays confirmed that the clinical isolates and the mutants overexpressing efflux pumps were resistant to ciprofloxacin and pentamidine. The deletion of the three efflux pumps induced sensitivity to both compounds. Exposure to pentamidine and ciprofloxacin in combination resulted in the synergistic inhibition of all resistant strains in vitro, but no synergy was observed versus the efflux-pump deletion strain. The treatment of infected G. mellonella larvae with the combination of pentamidine and ciprofloxacin resulted in enhanced efficacy compared with the monotherapies and significantly reduced the number of proliferating bacteria. Our measurement of efflux activity from cells revealed that pentamidine had a specific inhibitory effect on the MexCD-OprJ and MexEF-OprN efflux pumps. However, the efflux activity and membrane permeability assays revealed that pentamidine also disrupted the membrane of all cells. In conclusion, pentamidine does possess some efflux-pump inhibitory activity, in addition to a more general disruptive effect on membrane integrity that accounts for its ability to potentiate ciprofloxacin activity. Notably, the enhanced efficacy of combination therapy with pentamidine and ciprofloxacin versus MDR P. aeruginosa strains in vivo merits further investigation into its potential to treat infections via this pathogen in patients.
Collapse
Affiliation(s)
- Megan Fletcher
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK; (M.F.); (A.M.)
| | - Alex McCormack
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK; (M.F.); (A.M.)
| | - Benjamin J. Parcell
- NHS Tayside, Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK;
| | - Peter J. Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK; (M.F.); (A.M.)
| |
Collapse
|
7
|
Mabrouk SS, Abdellatif GR, Zaid ASA, Aboshanab KM. Propranolol restores susceptibility of XDR Gram-negative pathogens to meropenem and Meropenem combination has been evaluated with either tigecycline or amikacin. BMC Microbiol 2023; 23:195. [PMID: 37481513 PMCID: PMC10362616 DOI: 10.1186/s12866-023-02934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Infection with extensive-drug-resistant (XDR) carbapenem-resistant (CR) Gram-negative bacteria (GNB) are viewed as a serious threat to human health because of the limited therapeutic options. This imposes the urgent need to find agents that could be used as adjuvants or combined with carbapenems to enhance or restore the susceptibility of XDR CR- GNB. Therefore, this study aimed to examine the effect of propranolol (PR) in combination with Meropenem (MEM) on the susceptibility profile of XDR CR-GNB recovered from severely infected patients as well as to evaluate combining MEM with either tigecycline (TGC) or amikacin (AK). METHODS A total of 59 non-duplicate CR- GNB were investigated for carbapenemase production by the major phenotypic methods. Molecular identification of five major carbapenemase-coding genes was carried out using polymerase chain reactions (PCR). Antimicrobial susceptibility tests were carried out using standard methods. Phenotypic and genotypic relatedness was carried out using the heatmap and ERIC PCR analysis. PR, 0.5 -1 mg/mL against the resulting non-clonal XDR CR-GNB pathogens were evaluated by calculating the MIC decrease factor (MDF). A combination of MEM with either AK or TGC was performed using the checkerboard assay. RESULTS A total of 21 (35.6%) and 38 (64.4%) CR-GNB isolates were identified as enterobacterial isolates (including 16 (27.1%) Klebsiella Pneumoniae and 5 (8.5%) Escherichia coli) and non-fermentative bacilli (including, 23 (39%), Acinetobacter baumannii, and 15 (25.4%) Pseudomonas aeruginosa). The heatmap and ERIC PCR analysis resulted in non-clonal 28 XDR CR isolates. PR, at a concentration of 0.5 mg /ml, decreased MICs values of the tested XDR CR isolates (28; 100%) and restored susceptibility of only 4 (14.3%) isolates. However, PR (1 mg/mL) when combined with MEM has completely (28; 100%) restored the susceptibility of the tested XDR CR- GNB to MEM. The MEM + AK and MEM + TGC combination showed mostly additive effects (92.8% and 71.4%, respectively). CONCLUSION PR at a concentration of 1 mg/mL restored the susceptibility of XDR CR- GNB to MEM which is considered a promising result that should be clinically investigated to reveal its suitability for clinical use in patients suffering from these life-threatening pathogens.
Collapse
Affiliation(s)
- Samar S. Mabrouk
- Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6Th October, Giza, Egypt
| | - Ghada R. Abdellatif
- Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6Th October, Giza, Egypt
| | - Ahmed S. Abu Zaid
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566 Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566 Egypt
| |
Collapse
|
8
|
Tang M, Qian C, Zhang X, Liu Y, Pan W, Yao Z, Zeng W, Xu C, Zhou T. When Combined with Pentamidine, Originally Ineffective Linezolid Becomes Active in Carbapenem-Resistant Enterobacteriaceae. Microbiol Spectr 2023; 11:e0313822. [PMID: 37125928 PMCID: PMC10269503 DOI: 10.1128/spectrum.03138-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
The increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE) and their biofilm-relevant infections pose a threat to public health. The drug combination strategy provides a new treatment option for CRE infections. This study explored the synergistic antibacterial, antibiofilm activities as well as the in vivo efficacy against CRE of pentamidine combined with linezolid. This study further revealed the possible mechanisms underlying the synergy of the combination. The checkerboard and time-kill assays showed that pentamidine combined with linezolid had significant synergistic antibacterial effects against CRE strains (9/10). Toxicity assays on mammal cells (mouse RAW264.7 and red blood cells) and on Galleria mellonella confirmed that the concentrations of pentamidine and/or linezolid that were used were relatively safe. Antibiofilm activity detection via crystal violet staining, viable bacteria counts, and scanning electron microscopy demonstrated that the combination enhanced the inhibition of biofilm formation and the elimination of established biofilms. The G. mellonella infection model and mouse thigh infection model demonstrated the potential in vivo efficacy of the combination. In particular, a series of mechanistic experiments elucidated the possible mechanisms for the synergy in which pentamidine disrupts the outer membranes, dissipates the membrane potentials, and devitalizes the efflux pumps of CRE, thereby facilitating the intracellular accumulation of linezolid and reactive oxygen species (ROS), which ultimately kills the bacteria. Taken together, when combined with pentamidine, which acts as an outer membrane permeabilizer and as an efflux pump inhibitor, originally ineffective linezolid becomes active in CRE and exhibits excellent synergistic antibacterial and antibiofilm effects as well as a potential therapeutic effect in vivo on CRE-relevant infections. IMPORTANCE The multidrug resistance and biofilm formation of Gram-negative bacteria (GNB) may lead to incurable "superbug" infections. Drug combinations, with the potential to augment the original treatment ranges of drugs, are alternative treatment strategies against GNB. In this study, the pentamidine-linezolid combination showed notable antibacterial and antibiofilm activity both in vitro and in vivo against the problem carbapenem-resistant Enterobacteriaceae (CRE). Pentamidine is often used as an antiprotozoal and antifungal agent, and linezolid is a defensive Gram-positive bacteria (GPB) antimicrobial. Their combination expands the treatment range to GNB. Hence, the pentamidine-linezolid pair may be an effective treatment for complex infections that are mixed by GPB, GNB, and even fungi. In terms of mechanism, pentamidine inhibited the outer membranes, membrane potentials, and efflux pumps of CRE. This might be a universal mechanism by which pentamidine, as an adjuvant, potentiates other drugs, similar to linezolid, thereby having synergistic antibacterial effects on CRE.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| | - Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| | - Wei Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, China
| |
Collapse
|
9
|
Lin J, Xiao X, Liang Y, Zhao H, Yu Y, Yuan P, Lu S, Ding X. Repurposing non-antifungal drugs auranofin and pentamidine in combination as fungistatic antifungal agents against C. albicans. Front Cell Infect Microbiol 2022; 12:1065962. [PMID: 36590591 PMCID: PMC9798428 DOI: 10.3389/fcimb.2022.1065962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infection is a serious global health issue, causing approximately 1.5 million mortalities annually. However, clinically available anti-fungal drugs are limited, especially for multidrug-resistant fungal infections. Therefore, new antifungal drugs are urgently needed to address this clinical challenge. In this study, we proposed two non-antifungal drugs, auranofin and pentamidine, in combination to fight against multidrug-resistant C. albicans. The insufficient antifungal activity of anti-rheumatic drug auranofin is partially due to fungal membrane barrier preventing the drug uptake, and anti-protozoal drug pentamidine was used here to improve the permeability of membrane. The auranofin/pentamidine combination displayed synergistic inhibitory effect against both drug-susceptible and drug-resistant C. albicans, as well as biofilm, and significantly reduced the minimum inhibitory concentration of each drug. At non-antifungal concentration, pentamidine can disrupt the membrane integrity and increase membrane permeability, leading to enhanced cellular uptake of auranofin in C. albicans. This repurposing strategy using the combination of non-antifungal drugs with complementary antifungal mechanism may provide a novel approach for discovery of antifungal drugs to fight against multidrug-resistant fungal infections.
Collapse
Affiliation(s)
- Jiaying Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xueyi Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yijing Liang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingxiao Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| |
Collapse
|
10
|
Zhou Y, Huang W, Lei E, Yang A, Li Y, Wen K, Wang M, Li L, Chen Z, Zhou C, Bai S, Han J, Song W, Ren X, Zeng X, Pu H, Wan M, Feng X. Cooperative Membrane Damage as a Mechanism for Pentamidine-Antibiotic Mutual Sensitization. ACS Chem Biol 2022; 17:3178-3190. [PMID: 36269311 DOI: 10.1021/acschembio.2c00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Most Gram-positive-selective antibiotics have low activity against Gram-negative bacteria due to the presence of an outer membrane barrier. There is, therefore, interest in developing combination therapies that can penetrate the outer membrane (OM) with known antibiotics coupled with membrane-active sensitizing adjuvants. However, two unanswered questions hinder the development of such combination therapies: the sensitization spectrum of the sensitizer and the mechanism of antibiotic-sensitizer mutual potentiation. Here, with pentamidine as an example, we screened a library of 170 FDA-approved antibiotics in combination with pentamidine, a compound known to disturb the OM of Gram-negative bacteria. We found that four antibiotics, minocycline, linezolid, valnemulin, and nadifloxacin, displaced enhanced activity in combination with pentamidine against several multidrug-resistant Gram-negative bacteria. Through a descriptor-based structural-activity analysis and multiple cell-based biochemical assays, we found that hydrophobicity, partial charge, rigidity, and surface rugosity were key factors that affected sensitization via a cooperative membrane damage mechanism in which lipopolysaccharides and phospholipids were identified as sites of synergy. Finally, in vitro experiments showed that the linezolid-pentamidine combination slowed the generation of drug resistance, and there was also potent activity in in vivo experiments. Overall, our results highlight the importance of the physicochemical properties of antibiotics and cooperative membrane damage for synergistic pentamidine-antibiotic drug combinations.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - E Lei
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Anming Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lanxin Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zheng Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jingyu Han
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xuanbai Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Muyang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
11
|
Boles JE, Williams GT, Allen N, White LJ, Hilton KLF, Popoola PIA, Mulvihill DP, Hiscock JR. Anionic self‐assembling supramolecular enhancers of antimicrobial efficacy against Gram‐negative bacteria. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jessica E. Boles
- School of Chemistry and Forensics University of Kent Canterbury Kent CT2 7NH UK
- School of Biosciences University of Kent Canterbury Kent CT2 7NJ UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Nyasha Allen
- School of Biosciences University of Kent Canterbury Kent CT2 7NJ UK
| | - Lisa J. White
- School of Chemistry and Forensics University of Kent Canterbury Kent CT2 7NH UK
| | - Kira L. F. Hilton
- School of Chemistry and Forensics University of Kent Canterbury Kent CT2 7NH UK
| | | | | | - Jennifer R. Hiscock
- School of Chemistry and Forensics University of Kent Canterbury Kent CT2 7NH UK
| |
Collapse
|
12
|
Zhang X, Zhao Y, Feng L, Xu M, Ge Y, Wang L, Zhang Y, Cao J, Sun Y, Wu Q, Zhou T. Combined With Mefloquine, Resurrect Colistin Active in Colistin-Resistant Pseudomonas aeruginosa in vitro and in vivo. Front Microbiol 2021; 12:790220. [PMID: 34899672 PMCID: PMC8662342 DOI: 10.3389/fmicb.2021.790220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Colistin is a polymyxin antibiotic that is widely used for the treatment of multidrug resistant (MDR) Pseudomonas aeruginosa infections, as the last resort. Over the past few years, unreasonable use of antibiotics has resulted in an increase in MDR strains, including colistin-resistant P. aeruginosa. The present study aimed to explore the synergistic effects of mefloquine in combination with colistin for the treatment of colistin-resistant P. aeruginosa in vivo and in vitro. The synergistic effect of the combination of mefloquine and colistin was investigated in vitro using checkerboard method, time-killing assay, biofilm formation inhibition test, and biofilm eradication test. The study also explored the synergistic effects of this combination of drugs in vivo, using a Galleria mellonella infection model. The results for checkerboard method and time killing curve indicated that mefloquine in combination with colistin showed a good antibacterial activity. Furthermore, the combination of these two drugs inhibited biofilm formation and eradicated pre-formed mature biofilms. This synergistic effect was visualized using scanning electron microscopy (SEM), wherein the results showed that the combination of mefloquine and colistin reduced biofilm formation significantly. Further, the application of this combination of drugs to in vivo infection model significantly increased the survival rate of G. mellonella larvae. Altogether, the combination of mefloquine and colistin showed a good synergistic effect in vitro and in vivo, and highlighted its potential to be used as an alternative therapy for the treatment of colistin-resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiru Ge
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|